

So f tware

I D C D O C U M E N T A T I O N

Event
Magnitude

Software

Approved for public release;
distribution unlimited

 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

Notice

This document was published September 2001 by the Monitoring Systems Operation of Science Applications
International Corporation (SAIC) as part of the International Data Centre (IDC) Documentation. Every effort
was made to ensure that the information in this document was accurate at the time of publication. However,
information is subject to change.

Contributors

Douglas A. Brumbaugh, Science Applications International Corporation

Trademarks

ORACLE is a registered trademark of Oracle Corporation.
SAIC is a trademark of Science Applications International Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
SQL*Plus is a registered trademark of Oracle Corporation.
Sun is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information

The ordering number for this document is SAIC-01/3011.

This document is cited within other IDC documents as [IDC7.1.6].

Notice Page

Even t Magn i tude So f tware

E v e n t M a g n i t u d e S o

I D C - 7 . 1 . 6 S e p t e m b

I D C D O C U M E N T A T I O N

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE ii

■ RELATED INFORMATION iii

■ USING THIS DOCUMENT iii

Conventions iv

Chapter 1: Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 5

■ IDENTIFICATION 7

■ STATUS OF DEVELOPMENT 7

■ BACKGROUND AND HISTORY 7

■ OPERATING ENVIRONMENT 7

Hardware 8

Commercial-Off-The-Shelf Software 8

Chapter 2: Architectural Design 9

■ CONCEPTUAL DESIGN 10

■ DESIGN DECISIONS 11

Programming Language 11

Global Libraries 11

Database 11

Filesystem 12

Design Model 12

Database Schema Overview 13
f t w a r e

e r 2 0 0 1

I D C D O C U M E N T A T I O N

■ EVLOC FUNCTIONAL DESCRIPTION 14

Read Control-parameter Data 16

Read Station Data 16

Read Event Data 17

Obtain Updated Magnitude Results 17

■ LIBMAGNITUDE FUNCTIONAL DESCRIPTION 17

Read Earth-model Data 20

Build Magnitude Data Store 21

Estimate Station-magnitude Data 21

Estimate Network-magnitude Data 22

■ EVLOC INTERFACE DESIGN 23

Interface with Other IDC Systems 23

Interface with External Users 25

Interface with Operators 25

■ LIBMAGNITUDE INTERFACE DESIGN 25

Interface with Other IDC Systems 25

Interface with External Users 26

Interface with Operators 26

Chapter 3: Detai led Design 29

■ EVLOC DATA FLOW MODEL 30

■ LIBMAGNITUDE DATA FLOW MODEL 35

Station-magnitude Mode 36

Network-magnitude Mode 42

■ EVLOC PROCESSING UNITS 49

main() 51

read_evloc_par() 53

read_evloc_db_tables() 55

write_evloc_db_tables() 59

■ LIBMAGNITUDE PROCESSING UNITS 62

setup_mag_facilities() 73

read_mdf() 77

read_tlsf() 80
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

 E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o

I D C - 7 . 1 . 6 S e p t e m b

I D C D O C U M E N T A T I O N

read_tl_table() 85

build_mag_obj() 88

station_magnitude() 92

calc_mags() 97

network_mag() 103

mag_boot_strap() 107

mag_max_lik() 110

only_bound_amps() 113

■ PRIMARY LIBMAGNITUDE FUNCTIONAL AREAS 116

Station Magnitude Estimation 116

Network Magnitude Estimation 118

■ DATA DESCRIPTION 120

Database Design 121

Database Schema 121

EvLoc Data Structures 124

libmagnitude Data Structures 132

References 143

Glossary G1

Index I1
f t w a r e

e r 2 0 0 1

Even t Magn i tude So f tware

E v e n t M a g n i t u d e S o

I D C - 7 . 1 . 6 S e p t e m b

I D C D O C U M E N T A T I O N

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF LIBMAGNITUDE TO OTHER SOFTWARE UNITS 6

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR EVLOC 8

FIGURE 4. EVLOC FUNCTIONAL DESIGN 15

FIGURE 5. LIBMAGNITUDE FUNCTIONAL DESIGN IN STATION-MAGNITUDE MODE 18

FIGURE 6. LIBMAGNITUDE FUNCTIONAL DESIGN IN NETWORK-MAGNITUDE MODE 19

FIGURE 7. EVLOC DATA FLOW MODEL 32

FIGURE 8. LIBMAGNITUDE DATA FLOW MODEL IN STATION-MAGNITUDE MODE 37

FIGURE 9. DETAILED DATA FLOW OF READ EARTH-MODEL DATA 41

FIGURE 10. LIBMAGNITUDE DATA FLOW IN NETWORK-MAGNITUDE MODE 43

FIGURE 11. DETAILED DATA FLOW OF ESTIMATE NETWORK-MAGNITUDE DATA 48

FIGURE 12. EVENT MAGNITUDE DATABASE TABLE RELATIONSHIPS 124
f t w a r e

e r 2 0 0 1

Event Magn i tude So f tware

E v e n t M a g n i t u d e S o

I D C - 7 . 1 . 6 S e p t e m b

I D C D O C U M E N T A T I O N

TABLES
TABLE I: DATA-FLOW SYMBOLS iv

TABLE II: ENTITY-RELATIONSHIP SYMBOLS v

TABLE III: TYPOGRAPHICAL CONVENTIONS vi

TABLE 1: DATABASE TABLES USED BY EVLOC 13

TABLE 2: DATABASE TABLE STRUCTURES USED BY LIBMAGNITUDE 14

TABLE 3: CONFIGURATION OF POST-LOCATION PROCESSING PIPELINE 24

TABLE 4: DESCRIPTION OF DATA STORAGE TYPES 31

TABLE 5: CONTROL-PARAMETER-DATA MEMORY STORE (M3) 33

TABLE 6: STATION-DATA MEMORY STORE (M4) 33

TABLE 7: EVENT-DATA MEMORY STORE (M5) 34

TABLE 8: EARTH-MODEL-DATA MEMORY STORE (M1) 38

TABLE 9: STATION-MAGNITUDE-DATA MEMORY STORE (M7) 40

TABLE 10: STATION, EVENT, AND CONTROL-PARAMETER DATA MEMORY STORE (M6) 44

TABLE 11: MAGNITUDE-DATA MEMORY STORE (M2) 45

TABLE 12: HIERARCHY OF EVLOC PROCESSING UNITS 50

TABLE 13: INPUT VARIABLES TO MAIN() 52

TABLE 14: OUTPUT VARIABLES FROM READ_EVLOC_PAR() 54

TABLE 15: INPUT VARIABLES TO READ_EVLOC_DB_TABLES() 56

TABLE 16: OUTPUT VARIABLES FROM READ_EVLOC_DB_TABLES() 58

TABLE 17: INPUT VARIABLES TO WRITE_EVLOC_DB_TABLES() 60

TABLE 18: HIERARCHY OF PROCESSING UNITS IN READ EARTH-MODEL DATA PROCESS 63

TABLE 19: HIERARCHY OF PROCESSING UNITS IN BUILD MAGNITUDE

DATA STORE PROCESS 65

TABLE 20: HIERARCHY OF PROCESSING UNITS IN ESTIMATE

STATION-MAGNITUDE DATA PROCESS 66
f t w a r e

e r 2 0 0 1

I D C D O C U M E N T A T I O N
TABLE 21: HIERARCHY OF PROCESSING UNITS IN ESTIMATE
NETWORK-MAGNITUDE DATA PROCESS 68

TABLE 22: STAND-ALONE PROCESSING UNITS 70

TABLE 23: INPUT VARIABLES TO SETUP_MAG_FACILITIES() 74

TABLE 24: MAGNITUDE STATUS CODES 75

TABLE 25: TRANSMISSION-LOSS STATUS CODES 76

TABLE 26: INPUT VARIABLES TO READ_MDF() 78

TABLE 27: OUTPUT VARIABLES FROM READ_MDF() 79

TABLE 28: INPUT VARIABLES TO READ_TLSF() 81

TABLE 29: OUTPUT VARIABLES FROM READ_TLSF() 83

TABLE 30: READ_TLSF() WARNING SUMMARIES 85

TABLE 31: INPUT VARIABLES TO READ_TL_TABLE() 86

TABLE 32: OUTPUT VARIABLES FROM READ_TL_TABLE() 87

TABLE 33: INPUT VARIABLES TO BUILD_MAG_OBJ() 88

TABLE 34: INPUT VARIABLES TO STATION_MAGNITUDE() 93

TABLE 35: OUTPUT VARIABLES FROM STATION_MAGNITUDE() 95

TABLE 36: INPUT VARIABLES TO CALC_MAGS() 98

TABLE 37: OUTPUT VARIABLES FROM CALC_MAGS() 101

TABLE 38: ESTIMATE NETWORK-MAGNITUDE DATA PROCESS STATUS CODES 102

TABLE 39: INPUT VARIABLES TO NETWORK_MAG() 104

TABLE 40: OUTPUT VARIABLES FROM NETWORK_MAG() 105

TABLE 41: INPUT VARIABLES TO MAG_BOOT_STRAP() 108

TABLE 42: OUTPUT VARIABLES FROM MAG_BOOT_STRAP() 109

TABLE 43: INPUT VARIABLES TO MAG_MAX_LIK() 111

TABLE 44: OUTPUT VARIABLES FROM MAG_MAX_LIK() 113

TABLE 45: INPUT VARIABLES TO ONLY_BOUND_AMPS() 114

TABLE 46: OUTPUT VARIABLES FROM ONLY_BOUND_AMPS() 115

TABLE 47: STATION MAGNITUDE ESTIMATION SOURCE-CODE FILES 117

TABLE 48: NETWORK MAGNITUDE ESTIMATION SOURCE-CODE FILES 119

TABLE 49: EVLOC DATABASE USAGE FOR MAGNITUDE ESTIMATION 121
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

 E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o

I D C - 7 . 1 . 6 S e p t e m b

I D C D O C U M E N T A T I O N
TABLE 50: EVLOC_PAR STRUCTURE 125

TABLE 51: MAG_PARAMS STRUCTURE 129

TABLE 52: EV LINKED LIST 130

TABLE 53: MAG_PTR STRUCTURE 132

TABLE 54: MAGNITUDE OBJECT 133

TABLE 55: MAG_DESCRIP STRUCTURE 134

TABLE 56: MAG_STA_TLTYPE STRUCTURE 135

TABLE 57: SM_AUX STRUCTURE 136

TABLE 58: SM_INFO STRUCTURE 136

TABLE 59: SM_SUB STRUCTURE 138

TABLE 60: STA_TL_MODEL STRUCTURE 138

TABLE 61: TLTYPE_MODEL_DESCRIP STRUCTURE 139

TABLE 62: TL_MDL_ERR STRUCTURE 140

TABLE 63: TL_MODEL_PATH STRUCTURE 141

TABLE 64: TL_TABLE STRUCTURE 141
f t w a r e

e r 2 0 0 1

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using this Document
t w a r e

e r 2 0 0 1 i

S o f t w a r e
I D C D O C U M E N T A T I O N

ii
About th i s Document

PURPOSE

This document describes the design of the Event Magnitude (libmagnitude) soft-

ware library and, to a lesser extent, the Event Location (EvLoc) software, which are

elements of the International Data Centre (IDC). Both pieces of software are com-

puter software components (CSCs) of the Automatic Processing computer soft-

ware configuration item (CSCI). This document provides a basis for implementing,

supporting, and testing both pieces of software.

SCOPE

This document describes the architectural and detailed design of the libmagnitude

software library including its functionality, data structures, high-level interfaces,

and methods of execution. This document also describes the architectural and

detailed design of the EvLoc software necessary for magnitude estimation. This

information is modeled on the Data Item Description for Software Design Descrip-

tion [DOD94a].

AUDIENCE

This document is intended for all engineering and management staff concerned

with the design of all IDC software in general and of libmagnitude and EvLoc in

particular. The detailed descriptions are intended for programmers who will be

developing, testing, or maintaining libmagnitude and the magnitude functionality

within EvLoc.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
RELATED INFORMATION

The following documents complement this document:

■ Database Schema, Revision 2 [IDC5.1.1Rev2]

■ Event Location (libloc) Software [IDC7.1.5]

■ IDC Processing of Seismic, Hydroacoustic, and Infrasonic Data [IDC5.2.1]

See “References” on page 143 for a list of documents that supplement this docu-

ment. The following UNIX manual (man) pages apply to the existing libmagnitude

software:

■ libmagnitude

■ EvLoc

USING TH IS DOCUMENT

This document is part of the overall documentation architecture for the IDC. It is

part of the Software category, which describes the design of the software. This

document is organized as follows:

■ Chapter 1: Overview

This chapter provides a high-level view of libmagnitude and EvLoc,

including their functionality, components, background, status of

development, and current operating environment.

■ Chapter 2: Architectural Design

This chapter describes the architectural design of libmagnitude and EvLoc,

including their conceptual design, design decisions, functions, and inter-

face design.

■ Chapter 3: Detailed Design

This chapter describes the detailed design of libmagnitude and EvLoc,

including their data flow, software units, and database design.

■ References

This section lists the sources cited in this document.
iii

t w a r e

e r 2 0 0 1

iv

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.

■ Index

This section lists topics and features provided in the document along with

page numbers for reference.

Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions for data-flow diagrams. Table II shows the

conventions for entity-relationship (E-R) diagrams. Table III lists typographical con-

ventions.

TABLE I: DATA-FLOW SYMBOLS

Description Symbol1

1. Most symbols in this table are based on Gane-Sarson conventions [Gan79].

process

data store (left), duplicated data store (right)

 M = memory store

 D = disk store

 Db = database store

control flow

data flow

#

D D
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼About this Document
TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

A B

A B

A B

A B

tablename

primary key
foreign key

attribute 1
attribute 2
…
attribute n
v

t w a r e

e r 2 0 0 1

vi

▼ About this Document

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE III: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and
attribute, when written in
the dot notation

bold stamag

netmag.magnitude

database attributes

processes, software units,
and libraries

processing units

variable names

variables in output
computer code

titles of documents

 italics uncertainty

libmagnitude

setup_mag_facilities()

list_of_magtypes

Setting network sigma = <SGLIM1>

Software Design Description

computer code and
output

filenames, directories, and
websites

text that should be typed
in exactly as shown

memory store component

structure or object names

linked lists

data types

courier MDreadErr1: Cannot open MDF!

mag_access.c

EvLoc par = EvLoc.par

Mag_Params

Magnitude

Ev

char
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 1: Ove rv iew

This chapter provides a general overview of the libmagnitude and EvLoc software

and includes the following topics:

■ Introduction

■ Functionality

■ Identification

■ Status of Development

■ Background and History

■ Operating Environment
t w a r e

e r 2 0 0 1 1

S o f t w a r e
I D C D O C U M E N T A T I O N

2

Chapter 1: Ove rv iew

INTRODUCT ION

The software of the IDC acquires time-series and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which cul-

minate in the estimation of the location and origin time of events (earthquakes,

volcanic eruptions, and so on) in the earth, including its oceans and atmosphere.

The results of the analysis are distributed to States Parties and other users by vari-

ous means. Approximately one million lines of developmental software are spread

across six computer software configuration items (CSCIs) of the software architec-

ture. One additional CSCI is devoted to run-time data of the software. Figure 1

shows the logical organization of the IDC software. The Automatic Processing

CSCI processes data through the following computer software components

(CSCs):

■ Station Processing

This software scans data from individual time-series stations for charac-

teristic changes in the waveforms (detection of onsets) and characterizes

such onsets (feature extraction). The software then classifies the detec-

tions as arrivals in terms of phase type.

■ Network Processing

This software combines arrivals from several stations originating from

one event and infers the location and time of its origin.

■ Post-location Processing

This software computes various magnitude estimates and selects data to

be retrieved from auxiliary stations.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services

System
Monitoring

Station
Processing

Network
Processing

Atmospheric
Transport

Time-series
Analysis

Bulletin Process
Monitoring
and Control

Application
Services

Continuous
Data
Subsystem

Message
Subsystem

Subscription
Subsystem

Data Services
Utilities and

Data
Archiving

Database
Tools

Configuration
Management

Performance
Monitoring

System
Monitoring

IDC Software

Retrieve
Subsystem

Web
Subsystem

Data for
Software

Interactive
Data

System
Monitoring
Data

Automatic
Processing

Distributed
Processing
Data

Data
Services

COTS
Data

Environmental
Data

Post-
location
Processing

Time-series
Libraries

Operational
Scripts

Interactive
Tools

Distributed
Processing
Scripts

Data
Management

Database
Libraries

Data

Data

Event
Screening

Time-series
Tools

Libraries

Radionuclide
Processing

Authentication
Services

Analysis
Libraries

Radionuclide
Analysis

Distributed
Processing
Libraries

Data
Management
Data
3

t w a r e

e r 2 0 0 1

4

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
■ Event Screening

This software extracts a number of parameters that characterize an

event; then a default subset of the calculated Event Characterization

Parameters eliminates the events that are clearly not explosions.

■ Time-series Tools

This software includes various utilities for the Seismic, Hydroacoustic, and

Infrasonic (S/H/I) processing system.

■ Time-series Libraries

This software includes shared libraries to which several modules of the S/

H/I processing system are linked.

■ Operational Scripts

This software provides miscellaneous functionality to enable Automatic

Processing to function as a system.

■ Radionuclide Processing

This software includes the automated analysis, categorization, and

flagging processes for radionuclide data.

■ Atmospheric Transport

This software includes the forward and backward modeling of the

transport of particulates by atmospheric movements.

The libmagnitude common software library resides in the Time-series Libraries CSC

of the Automatic Processing CSCI. However, this library is used in multiple applica-

tions in the Automatic Processing and Interactive Processing CSCIs. The

libmagnitude library is used by the Station Processing (StaPro) application in the

Station Processing CSC, the Global Association (GA) Subsystem in the Network

Processing CSC, and the WaveExpert and Event Location (EvLoc) applications in the

Post-location Processing CSC of the Automatic Processing CSCI. The libmagnitude

library is also used by the Analyst Review Station (ARS) application in the Time-

series Analysis CSC of the Interactive Processing CSCI.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
Figure 2 shows the relationship of libmagnitude to the applications of the Auto-

matic Processing and Interactive Processing CSCIs mentioned in the previous para-

graph. At the request of a user (that is, the operator or Distributed Applications

Control System [DACS] pipeline process), which is not shown in Figure 2, these

applications read station and event data from an input database account and con-

trol parameters from parameter/Scheme files. They pass station and event data

and magnitude-related control parameters to one or more libmagnitude interfaces,

which distribute control and data to other libmagnitude processes. The

libmagnitude processes acquire data from a set of earth-model files. After the

requested processing is complete, the resulting magnitude data are returned to the

applications. The applications in Figure 2 write updated event data to an output

database. These event data may or may not include the magnitude information

returned from libmagnitude.

This document mainly describes the design elements of the libmagnitude software.

However, because libmagnitude is a library, a description of how applications inter-

face with it is essential. EvLoc calls most of the libmagnitude processing units and

therefore serves as a convenient application for describing these interfaces. For

completeness, this document also describes the design elements of EvLoc.

FUNCT IONALITY

The libmagnitude software has two basic modes of operation: estimating station-

magnitude data and estimating network-magnitude data. In the station-magni-

tude mode, magnitude corrections are applied to event data to estimate station-

magnitude data. The magnitude corrections are read from a set of earth-model

files (D2 in Figure 2). In the network-magnitude mode, network-magnitude data

are estimated from station-magnitude data. Because station-magnitude data are

necessary to estimate network-magnitude data, the computation of station-mag-

nitude data is a necessary process within the network-magnitude mode. These two

modes are described in more detail in “Conceptual Design” on page 10.
5

t w a r e

e r 2 0 0 1

6

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 2. RELATIONSHIP OF LIBMAGNITUDE TO OTHER SOFTWARE UNITS

A user may not directly call any libmagnitude functions. The user must use an

application to access the functionality provided by libmagnitude. Figure 2 indicates

five applications that access libmagnitude. StaPro, the GA Subsystem, and WaveEx-

pert only operate in the station-magnitude mode. EvLoc and ARS operate in the

network-magnitude mode.

The EvLoc software estimates event location and magnitude data either in combi-

nation or as independent processes. Although magnitude data may not be esti-

mated without first locating events, all discussion of EvLoc in this document

assumes that events have already been located and that EvLoc is processing magni-

tude data only. Refer to [IDC7.1.5] for information about how EvLoc processes

event location data.

processes
libmagnitude

WaveExpert,
StaPro, GA,

EvLoc, ARS

2

1

control
parameters

magnitude
data

station and event
data, control
parameters

input databaseDb1

output databaseDb2
parameter and

D1 Scheme files

earth-model
D2 files earth-model data

station and
event data magnitude

data
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 1:

Overview
IDENT IF ICAT ION

The event-magnitude software components are identified as follows:

■ libmagnitude

■ EvLoc

STATUS OF DEVELOPMENT

The libmagnitude and EvLoc software is mature and stable. This software is under-

going limited enhancements on a continuing basis.

BACKGROUND AND H ISTORY

Keith McLaughlin, Hans Israelsson, Steve Bratt, Walter Nagy, Jeffrey Given, and

SAIC staff began developing libmagnitude in 1989. At the time, this magnitude

software library was known as libmagn instead of libmagnitude. The original lib-

magn software was written in FORTRAN. In 1997, Walter Nagy of SAIC converted

the FORTRAN source code to C and renamed the library.

libmagn was first used operationally in 1989 as part of the GSETT-3 effort.

libmagnitude was first used operationally in 1998. libmagnitude currently is an ele-

ment of the Prototype IDC (PIDC) at the Center for Monitoring Research (CMR) in

Arlington, Virginia, USA and at the International Data Centre of the Comprehen-

sive Nuclear-Test-Ban Treaty Organization (CTBTO IDC) in Vienna, Austria. EvLoc

is also used both operationally and as a research tool in a number of other systems.

OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and commercial-off-the-shelf

(COTS) software required to operate EvLoc and libmagnitude.
7

t w a r e

e r 2 0 0 1

8

▼

Chapter 1:

Overview

S o f t w a r e
I D C D O C U M E N T A T I O N
Hardware

EvLoc is designed to run on a UNIX workstation, such as the SPARC-20 manufac-

tured by Sun Microsystems. Typically, the hardware is configured with 256 MB of

memory and a minimum of 2 GB of magnetic disk, although EvLoc could be exe-

cuted on systems with smaller resources, depending on the number and type of

other resident processes. The required memory will scale roughly with the number

of events processed. EvLoc obtains database access over an Ethernet connection to

other computers residing on a Local Area Network. Figure 3 shows a representa-

tive hardware configuration. Using this hardware configuration, EvLoc typically

requires less than 5 seconds of processing time to estimate station magnitudes and

a network-average magnitude for all events in an hour-long segment of analyst-

reviewed seismic data.

libmagnitude does not require any special hardware configuration.

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR EVLOC

Commerc i a l -Off -The-She l f So f tware

The libmagnitude and EvLoc software are designed for Solaris 2.7 and ORACLE

8.1.5. No other COTS software is required.

monitor

2.0 GB disk
SPARC 20 Model 612

256 MB RAM

Local Area Network
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 2: A r ch i tec tu ra l Des i gn

This chapter describes the architectural design of libmagnitude and EvLoc and

includes the following topics:

■ Conceptual Design

■ Design Decisions

■ EvLoc Functional Description

■ libmagnitude Functional Description

■ EvLoc Interface Design

■ libmagnitude Interface Design
t w a r e

e r 2 0 0 1 9

S o f t w a r e
I D C D O C U M E N T A T I O N

10
Chapter 2: A r ch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The purpose of the EvLoc software is to acquire data from input data stores (data-

base and static data files), exchange it with the libmagnitude and libloc software

libraries, and write the resulting data to an output data store (database). These two

software libraries perform most of the processing; EvLoc is primarily a medium

between the data storage units and the critical processing units. EvLoc reads con-

trol parameters from an input parameter file, and station and event data from the

database, and passes these data to one or both libraries for determining magni-

tude/location estimates. The resulting magnitude/location data are returned to

EvLoc, which writes the results to the database.

The purpose of the libmagnitude software is to provide a set of software interfaces

for reading and storing input event and earth-model data, estimating station-mag-

nitude data, and estimating network-magnitude data. The software design

assumes that input events have already been located by the libloc software. The

functionality provided by the libmagnitude interfaces and their associated lower-

level processing units comprises the two functional modes of operation discussed

in “Functionality” on page 5. Specifically, the station-magnitude mode reads and

stores input earth-model data and estimates station-magnitude data. The

network-magnitude mode uses the functionality of the station-magnitude mode

coupled with the input event data to estimate network-magnitude data.

One of the central libmagnitude elements is the Magnitude object (see Table 54

on page 133). libmagnitude was designed to be more object-oriented than its pre-

decessor, libmagn, so the Magnitude object was established as the central

(shared) data store. This Magnitude “object” is not a true object as often used in

object-oriented programming in that it only contains data and not the functions

applied to the data. Strictly speaking, the Magnitude object is a complex data
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
structure. Multiple libmagnitude processing units and even external applications

may access the data contained within this object, but only when they are operating

in the network-magnitude mode of operation. A detailed description of the design

and usage of the Magnitude object is provided in “build_mag_obj()” on page 88.

DES IGN DEC IS IONS

The following design decisions pertain to EvLoc and libmagnitude.

Prog ramming Language

Each software unit of EvLoc and libmagnitude is written in the C programming

language. This supports efficient processing and convenient integration with other

components of the IDC system.

Globa l L ib ra r i e s

The EvLoc software requires the following shared libraries: libgdi, libloc,

libmagnitude, libinterp, libgeog, libLP, libstdtime, libdb30qa, libpar, and libaesir. The

EvLoc software is also linked to the following COTS libraries: libF77, libtermcap, lib-

socket, libnsl, libelf, libm, libdl, and libsunmath.

The libmagnitude software requires the following shared libraries: libinterp, libgeog,

libstdtime, and libaesir. The libmagnitude software requires the libm COTS library.

Database

EvLoc accesses an ORACLE database account and reads data from site, origin,

assoc, amplitude, parrival, stamag, and netmag tables. EvLoc also requires data from

an affiliation table to link the stations assigned to a network to data from the input

site table. EvLoc may also use an event_control table to retrieve or set a number of

magnitude control parameters. These data are stored internally in analogous data-

base table structures, most of which are then passed to libmagnitude processes.

Upon successful completion of libmagnitude processing, EvLoc writes data returned

from libmagnitude to the output origin, stamag, netmag, and optionally
11

t w a r e

e r 2 0 0 1

12

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
event_control database tables. Other applications, such as ARS, perform tasks simi-

lar to EvLoc, although the list of input or output database tables may differ.

Descriptions of these tables are given in [IDC5.1.1Rev2].

F i l e sy s tem

EvLoc uses parameter files to specify program control. Other applications that use

libmagnitude, such as ARS, also use Scheme files for this purpose. libmagnitude is a

software library, so it does not read parameter or Scheme files. Instead, program

control parameters are passed from EvLoc or any calling application to it.

libmagnitude requires input earth-model data. The earth-model data are stored on

the filesystem in ASCII flat files and are read by libmagnitude processing units (Fig-

ure 2 on page 6).

In addition, the user may want to direct output from EvLoc/libmagnitude process-

ing units to log files. At present, the UNIX filesystem is the only supported filesys-

tem for which libmagnitude and EvLoc have been validated.

Des ign Mode l

The design of libmagnitude is primarily influenced by commonality, flexibility and

extensibility, maintainability, and timeliness requirements. The commonality

requirement is that all IDC applications estimate magnitudes in the same way. This

is addressed by providing a set of standard interfaces that utilize common proce-

dures and earth-model data that can be employed by all IDC applications. Flexibil-

ity and extensibility are necessary to allow future support for additional magnitude

types. This is addressed by implementing a standard representation and application

of transmission-loss data, which is applicable to all magnitude types. This informa-

tion is managed by standard Transmission-Loss Specification File (TLSF) and Mag-

nitude Description File (MDF). Maintainability is addressed by the use of these two

specification files and the use of C as a standard implementation language. Timeli-

ness is addressed by using C to efficiently access, store, and process the earth-

model data.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Database Schema Overv iew

EvLoc uses the ORACLE database tables for the following purposes:

■ to retrieve station data (site, affiliation)

■ to retrieve event and signal data (origin, assoc, parrival, amplitude, stamag,

netmag)

■ to retrieve optional magnitude control parameters (event_control)

■ to store updated magnitude information (origin, netmag, stamag,

event_control)

Many EvLoc processing units require reading data from or writing data to database

tables. The data retrieved from or written to the database tables are stored inter-

nally in C database table structures that are structurally equivalent to the database

tables themselves. Table 1 shows the database tables used by EvLoc. The Name

column identifies the database table. The Mode column is “R” if EvLoc reads from

the table and “W” if EvLoc writes to the table.

TABLE 1: DATABASE TABLES USED BY EVLOC

Name Mode Description

affiliation R station network information

site R station location information

origin R/W origin information for particular event, including location and
magnitude estimates

assoc R arrival association information

parrival R predicted arrivals and associations for origin-based amplitude
measurements

amplitude R amplitude measurements

stamag R/W station-magnitude estimates

netmag R/W network-magnitude estimates

event_control R/W event location and magnitude control parameters (optional)
13

t w a r e

e r 2 0 0 1

14

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
libmagnitude does not access the database tables directly; it only uses the database

table structures provided by the calling application. Table 2 shows the database

table structures used by libmagnitude. The Name column identifies the database

table structure. The Mode column is “R” if libmagnitude uses a table structure read

from an input database account and “W” if libmagnitude populates a table struc-

ture written to an output database account.

The Affiliation and Event_Control database table structures are not used

by libmagnitude. EvLoc reads affiliation and event_control data and stores them in

database table structures. However, EvLoc only uses the affiliation data to retrieve

station location data from the input site table and EvLoc copies the magnitude con-

trol parameters from the event_control data into a different C structure that is

passed to libmagnitude.

EVLOC FUNCT IONAL DESCR IPT ION

The main processes of EvLoc, as they relate to magnitude processing, are described

in this section. Because libmagnitude is a library, EvLoc is employed as a specific

application vehicle to demonstrate how libmagnitude functions are commonly

exploited. EvLoc, along with ARS, operates in network-magnitude mode and there-

TABLE 2: DATABASE TABLE STRUCTURES USED BY LIBMAGNITUDE

Name Mode Description

Site R station location information

Origin R/W origin information for particular event, including location and
magnitude estimates

Assoc R arrival association information

Parrival R predicted arrivals and associations for origin-based amplitude
measurements

Amplitude R amplitude measurements

Stamag R/W station-magnitude estimates

Netmag R/W network-magnitude estimates
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
fore invokes all of the primary libmagnitude interfaces. Other applications (see

“Functionality” on page 5) operate in station-magnitude mode and consequently

only invoke some of the primary libmagnitude interfaces.

Figure 4 shows the EvLoc functional design. In this and subsequent data flow dia-

grams, EvLoc processes are assigned unique identifiers of the form “1.n”. EvLoc

has four main processes. First, it reads control-parameter arguments from an input

parameter file and optional magnitude control parameters from an input database.

Second, EvLoc reads station data from the input database tables (Table 1). Third, it

reads event data from the input database tables. The control parameters, station

data, and event data are put in memory stores that are passed to libmagnitude for

processing. The memory stores are identified and described in “EvLoc Data flow

Model” on page 30. When libmagnitude processing is complete, any updated

event results (station- and network-magnitude data) are returned to EvLoc. The

fourth main process of EvLoc obtains the updated magnitude data and writes it to

output database tables (Table 1).

FIGURE 4. EVLOC FUNCTIONAL DESIGN

Station Data
Read

1.2

processes
libmagnitude

2

magnitude control
parameters (optional)

control
parameters

output databaseDb2input databaseDb1parameter filesD1

Event Data
Read

1.3

station event
data data

parameter
Read Control-

Data

1.1

Updated
Obtain

Magnitude
Results

1.4

magnitude
data

station
data

event
data

magnitude
data

control
parameters
15

t w a r e

e r 2 0 0 1

16

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Read Cont ro l -pa ramete r Da ta

The first main EvLoc process (1.1 in Figure 4) reads and stores control parameters

that are necessary for magnitude processing. Most control parameters are read

from an input parameter file (D1), but some may optionally be read from an input

database account (Db1).

Process 1.1 reads control parameters from the parameter file using interfaces from

the libpar library. These parameters are either required or optional. Required

parameters must be specified or EvLoc immediately exits and returns an error mes-

sage. Optional parameters have default states that are overridden only if specified

in the input parameter file. The parameters define general and magnitude-specific

information such as input and output database accounts and tables, station net-

work, events to be processed, directory locations of earth-model files, and addi-

tional magnitude control parameters. These control-parameter data are stored in

memory. (Refer to the EvLoc man page for descriptions of available parameters.)

Process 1.1 may optionally read additional magnitude control parameters from the

event_control table (see Table 1 on page 13) using interfaces from the libgdi library.

The event_control table contains control information that may vary on an event-by-

event basis. These magnitude control parameter data are also stored in memory.

Read S ta t ion Data

The second main EvLoc process (1.2 in Figure 4) reads station data from an input

database account (Db1) and stores them in memory. Process 1.2 reads the station

data from the site and affiliation tables (see Table 1) using interfaces from the libgdi

library. The station-network relationship within the affiliation table defines which

subset of station records are to be retrieved from the site table. This process copies

the site records into Site database table structures (see Table 2 on page 14) and

stores them in memory. The Site structures are required by the libmagnitude

interface for reading earth-model files.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Read Event Data

The third main EvLoc process (1.3 in Figure 4) reads event data from an input data-

base account (Db1) and stores them in memory. Process 1.3 reads the event data

from the origin, assoc, amplitude, parrival, stamag, and netmag tables (see Table 1)

using interfaces from the libgdi library. It copies records from these tables into

Origin, Assoc, Amplitude, Parrival, Stamag, and Netmag database table

structures (see Table 2) and stores them in memory. These structures are required

by several libmagnitude interfaces.

Obta in Updated Magn i tude Resu l t s

The fourth main EvLoc process (1.4 in Figure 4) obtains updated station- and

network-magnitude data estimated by libmagnitude and writes these results to an

output database account (Db2). Process 1.4 writes the updated magnitude data to

the origin, stamag, netmag, and optionally, event_control tables (see Table 1) using

interfaces from the libgdi library. The origin, stamag, and netmag records are created

by this process from Origin, Stamag, and Netmag database table structures (see

Table 2) passed from libmagnitude. If specified by control parameters, event_control

records are created by this EvLoc process and written to the database.

Process 1.4 may also be configured to output log file results to the filesystem in a

simple ASCII format.

L IBMAGNITUDE FUNCT IONAL
DESCR IPT ION

The main processes of libmagnitude are described in this section.

libmagnitude has four main processes. However, the processes that are accessed

depend on the mode of operation. When an application operates in station-

magnitude mode, only two main libmagnitude processes are accessed. When an

application operates in network-magnitude mode, all four main processes are

accessed.
17

t w a r e

e r 2 0 0 1

18

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 5 shows the libmagnitude functional design in station-magnitude mode. In

this and subsequent data flow diagrams, libmagnitude processes are assigned

unique identifiers of the form “2.n”. Two main libmagnitude processes are associ-

ated with this mode. First, libmagnitude reads a set of earth-model files (2.1). Sec-

ond, it estimates station-magnitude data from event data (primarily amplitude

data) and earth-model data (2.3). In Figure 5, this process is labeled 2.3 instead of

2.2 because another process is present between these two processes in the

network-magnitude mode functional design.

FIGURE 5. LIBMAGNITUDE FUNCTIONAL DESIGN IN STATION-MAGNITUDE
MODE

Figure 6 shows the libmagnitude functional design in network-magnitude mode.

All four main libmagnitude processes are associated with this mode. First,

libmagnitude reads a set of earth-model files (2.1). Second, it stores event data and

magnitude specification data in a memory store (2.2). Third, libmagnitude esti-

mates station-magnitude data from event data (primarily amplitude data) and

earth-model data (2.3). Fourth, it estimates network-magnitude data from station-

magnitude data using up to four different computational algorithms (2.4).

earth-model
D2 files

earth-model
M1 data

Application

1

model Data
Read Earth-

magnitude
correction data

2.1

station data,
control

parameters

event data,
control

parameters

earth-model data

station-
magnitude

data

earth-
model
data

Station-
Estimate

magnitude
Data

2.3
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

19
ID

C
-7

.1
.6

 S
e

p
te

m
b

e
r 2

0
0

1

E
v

e
n

t M
a

g
n

itu
d

e
 S

o
ftw

a
re

▼

C
h

a
p

te
r 2

:

A
rc

h
ite

c
tu

ra
l D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

network
magnitudes
(optional)

n-magnitude
, magnitude
ification data

network-
magnitude

data

station- and
network-

magnitude
data

Network-
Estimate

magnitude
Data

2.4
FIGURE 6. LIBMAGNITUDE FUNCTIONAL DESIGN IN NETWORK-MAGNITUDE MODE

origin
location data,

control
parameters

earth-model
D2 files

1

Application

Magnitude
Build

Data Store

2.2

Earth-model
Read

Data

2.1

magnitude

station data,
control

parameters

earth-
model

earth-model
M1 data

magnitude dataM2

earth-model
data

magnitude
description

data

amplitude data,
pre-existing station-

correction
station-

magnitude

statio
data
spec

data

data

magnitude data,
magnitude

data

event
data,

magtypes

Station-
Estimate

magnitude
Data

2.3 origin
location data,

control
parameters

specification data

amplitude data,
pre-existing

magnitude data,
magnitude

specification data

20

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
libmagnitude processes may not be called directly by a user. However, any applica-

tion may access any of the four primary processes. The only constraints are that

the processes must be accessed in the order they are presented in Figures 5 and 6.

Read Ea r th -mode l Da ta

The first main process of libmagnitude reads a set of earth-model files (D2 in Figure

5 and Figure 6) and stores the contents in an earth-model-data memory store (M1

in Figures 5 and 6). This process (2.1 in Figures 5 and 6), is performed regardless of

the operational mode.

The calling application passes a set of station data and control parameters to this

libmagnitude process. These data define which earth-model data should be read

from the earth-model files (D2) and stored in the earth-model-data memory store

(M1). The earth-model files are a collection of three different types of ASCII flat

files: a MDF, a TLSF, and one or more Transmission-Loss Models (TLMs). The MDF

defines magnitude control settings for any number of magnitude descriptors (mag-

types), links magtypes to transmission-loss descriptors (TLtypes), and specifies

bulk-station-correction data given TLtype-station combinations. The TLSF is the

central control point for defining all regionalized transmission-loss knowledge. The

TLSF links TLtypes to default TLMs, links station-TLtype (and optionally phase and

channel/frequency) combinations to station-specific TLMs, and associates phase

names with TLtypes. This latter association ultimately defines the phases used to

compute a given magtype through the magtype-TLtype link in the MDF. The TLMs

contain distance/depth-dependent magnitude corrections and modeling errors.

The formats and structures associated with these three file types are described in

conjunction with the libmagnitude processing units that parse them in

“read_mdf()” on page 77, “read_tlsf()” on page 80, and “read_tl_table()” on

page 85.

The TLSF is designed to be the central control point connecting control parameters

to raw transmission-loss correction data. It has the capacity to serve as a control

point for other sets of control parameters that require access to raw data files as

well. Presently, only magnitude computations use this particular design.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
Bu i ld Magn i tude Data S to re

The second main process of libmagnitude stores input event and magnitude speci-

fication data in a magnitude-data memory store (M2 in Figure 6 on page 19). The

data are stored in Magnitude objects (see Table 54 on page 133). This process

(2.2 in Figure 6) is only performed in network-magnitude mode.

This process stores input event data passed from the calling application and magni-

tude description data read from the earth-model-data memory store (M1) for an

input list of magtypes. The event data are the six database table structures listed in

Table 2 on page 14 that contain event information. The amplitude data are copied

into M2. If station- and network-magnitude data already exist for any of the input

events, then these “pre-existing” data are also copied into M2. The magnitude

description data are magnitude control settings stored in M1. The magnitude

description data are copied into Magnitude objects, renamed as magnitude speci-

fication data, and stored in M2. Consolidation of data relevant to computing sta-

tion- and network-magnitude data into one memory store permits easy access to

these data.

Es t imate S ta t ion -magn i tude Data

The third main process of libmagnitude estimates a station magnitude, uncertainty,

and other ancillary station-magnitude data. This process (2.3 in Figure 5 on page

18 and Figure 6), is performed regardless of the operational mode. However, the

mode dictates where the input data are read from and where the output station-

magnitude data are stored.

In station-magnitude mode (Figure 5) the calling application passes event data and

control parameters to process 2.3. Process 2.3 then reads magnitude correction

data in the form of distance/depth adjustments from M1 and applies them to input

event (for example, amplitude and period) data to estimate a station magnitude.

Process 2.3 also reads the modeling errors from M1 and incorporates them into the

uncertainty estimation process. The resulting station magnitude, uncertainty, and

other determined station-magnitude data are returned to the application.
21

t w a r e

e r 2 0 0 1

22

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
In network-magnitude mode (Figure 6) the calling application also passes event

data and control parameters to process 2.3. However, the event data are only ori-

gin location information and do not include amplitude data. The amplitude data,

pre-existing magnitude data, and magnitude specification data are read from the

magnitude-data memory store (M2) by process 2.3. This process then estimates

station magnitudes, uncertainties, and other station-magnitude data (as described

in the previous paragraph) using the magnitude corrections and modeling errors

read from the earth-model-data memory store (M1). This process also uses the

control parameters and magnitude specification data to identify which station

magnitudes will be used to estimate network magnitudes. This additional function-

ality is not present in station-magnitude mode.

The resulting station-magnitude data are stored within the Magnitude objects

(M2). The application may retrieve the station-magnitude data from M2 after pro-

cess 2.3 successfully completes.

Es t imate Network -magn i tude Data

The fourth main process of libmagnitude estimates a network magnitude, uncer-

tainty, and other ancillary network-magnitude data. This process (2.4 in Figure 6),

is only performed in network-magnitude mode.

This process estimates network-magnitude data by using origin location data and

control parameters passed from the calling application through process 1.3, and

station-magnitude data and magnitude specification data read from the magni-

tude-data memory store (M2). Network mb, Ms, and ML magnitudes and uncer-

tainties are estimated using any of the following algorithms: network average,

weighted network average, maximum-likelihood estimate (MLE), weighted MLE,

upper- or lower-magnitude bounds, and weighted upper- or lower-magnitude

bounds. The MLE magnitude uncertainty may also be determined by a bootstrap

resampling technique [McL88]. The control parameters and magnitude specifica-

tion data define how these algorithms use the station-magnitude data to estimate

network-magnitude data. Upper- or lower-magnitude bounds may only be esti-

mated if all available amplitudes are theoretical or clipped, respectively.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
The resulting network-magnitude data are stored within the Magnitude objects

(M2). The application may retrieve the network-magnitude data from M2 after

process 2.4 successfully completes.

EVLOC INTERFACE DES IGN

This section describes EvLoc’s interfaces with other IDC systems, external users,

and operators.

I n te r f ace w i th Othe r IDC Sys tems

EvLoc is an important software component of the Post-location Processing pipeline

in the IDC Automatic Processing CSCI. [IDC6.5.2Rev0.1] describes the initializa-

tion criteria, control flow, and configuration of this pipeline. Briefly, the Post-loca-

tion Processing pipeline initiates after an analyst pushes the “delpass” or

“scanpass” buttons in the analyst_log application of the Interactive Processing

CSCI. A tis_server data monitor with the service name of tis-recall creates intervals

and a succession of queues and tuxshells that launch the applications constituting

the Post-location Processing pipeline. The tuxshell processing server assembles a

command line for each application or child process, submits the command line to

the operating system, monitors its execution, and evaluates the exit status. If the

child process is successful, tuxshell sends a message to the next processing queue

to launch the next child process. The configuration of the Post-location Processing

pipeline is described in Table 3.
23

t w a r e

e r 2 0 0 1

24

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
During EvLoc execution, which is initiated either by tuxshell or MsOrid, EvLoc reads

station and event data from the input database and writes magnitude data to the

output database through libgdi interfaces (Figure 4 on page 15). The input event

data are populated either by ARS or DFX. The event data from ARS are written to

the database after review by an analyst. The event data from DFX are estimated

during the DFX-noiseamp processing step (Table 3). DFX does not initiate EvLoc or

interface with libmagnitude, so it is not discussed in further detail; a description of

the DFX application design is available in [IDC7.1.1]. The output magnitude data

TABLE 3: CONFIGURATION OF POST-LOCATION PROCESSING PIPELINE

Queue and
tuxshell Service
Name

Child
Process
Name Processing Description

DFX-recall DFX1

1. Detection and Feature Extraction application of the Automatic Processing CSCI.

revises seismic waveform measurements after ana-
lyst review2

2. See [IDC7.1.1].

DFX-dphase-SNR DFX1 computes specialized snr for event-associated depth
phases2

DFX-noiseamp DFX1 estimates amplitudes for theoretical arrivals at sta-
tions that did not detect arrivals from a given origin2

EvLoc-mb_ave EvLoc estimates mb network averages

EvLoc-mb_mle EvLoc estimates mb MLEs

EvLoc-mb1 EvLoc estimates mb weighted network averages and mb
weighted MLEs

EvLoc-mlppn EvLoc estimates ML weighted network averages

MsOrid MsInterval,
MsOrid,
maxsurf

tests for existence of surface waves, measures ampli-
tudes, and estimates Ms network averages, Ms
MLEs, Ms weighted network averages, and Ms
weighted MLEs3

3. The four Ms network magnitudes are estimated through two executions of EvLoc that are a
part of the MsOrid child process.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
are available in the output database at the completion of the Post-location Pro-

cessing pipeline for use by applications in a later pipeline such as the Reviewed

Event Bulletin (REB) pipeline [IDC6.5.2Rev0.1].

I n te r f ace w i th Ex te rna l Use r s

EvLoc may be executed directly from the command line by specifying the

executable name and an input parameter file, such as:

EvLoc par=EvLoc.par

The ability to execute EvLoc outside of a pipeline allows researchers and testers to

tune, test, and experiment with location and magnitude parameters on varying

sets of input station and event data.

I n te r f ace w i th Opera to r s

EvLoc writes error messages to standard error. In IDC operations, these messages

are generally redirected to a log file. Such messages may provide clues to the oper-

ator if processing fails. EvLoc also writes informational messages to standard out-

put. These messages may help to tune the configuration.

L IBMAGNITUDE INTERFACE DES IGN

This section describes libmagnitude’s interfaces with other IDC systems, external

users, and operators.

I n te r f ace w i th Othe r IDC Sys tems

libmagnitude only interfaces with other IDC systems to the extent that it reads

much of its required earth-model data from the filesystem. However, applications

that use libmagnitude interfaces do interact with other IDC systems through data-

base reads and writes and through filesystem access.
25

t w a r e

e r 2 0 0 1

26

▼

Chapter 2:

Architectural Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Figure 2 on page 6 shows that StaPro, the GA Subsystem, WaveExpert, EvLoc, and

ARS utilize libmagnitude processes. StaPro, the GA Subsystem, and WaveExpert use

libmagnitude in station-magnitude mode to read earth-model data and estimate

station-magnitude data. StaPro writes the station magnitudes to the origin table,

but does not write netmag or stamag. The GA Subsystem uses the station-magni-

tude data to estimate network-magnitude data independent of libmagnitude. The

GA grid constructor (GAcons), which is a component of the GA Subsystem, writes

a set of magnitude correction derivatives that are computed in conjunction with

station magnitudes to a binary GA grid file. WaveExpert uses the distance-depth

magnitude corrections and modeling errors read from the TLMs to estimate the

probability of detecting an event at a set of stations.

EvLoc and ARS use libmagnitude in network-magnitude mode to estimate station-

and network-magnitude data. As previously discussed, EvLoc reads station and

event data from an input database, sends them along with control parameters to

multiple libmagnitude processes, and writes the resulting station- and network-

magnitude data to an output database. ARS calls libmagnitude in much the same

way, except that the resulting station- and network-magnitude data are not writ-

ten to the output database until the analyst explicitly saves the analyzed event

[IDC6.5.1]. In other words, multiple sets of station- and network-magnitude data

may be generated using different magnitude control parameters, but only the ana-

lyst’s preferred solution of the set is saved to the output database. ARS also calls

many more libmagnitude processing units than EvLoc. Most of these interfaces are

low level. Refer to “libmagnitude Processing Units” on page 62 and [IDC6.5.1] for

more details on these lower-level interfaces.

I n te r f ace w i th Ex te rna l Use r s

libmagnitude does not have an interface for external users.

I n te r f ace w i th Opera to r s

libmagnitude writes error messages to standard error. These messages may provide

clues to the operator if processing fails. libmagnitude also writes various quantities

of station and network magnitude results to standard output depending on the
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 2:

Architectural Design
level of the verbosity parameter. These results may help to tune the configuration

of the calling application. Both error and informational messages are usually redi-

rected to log files during normal IDC operational processing.
27

t w a r e

e r 2 0 0 1

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N
Chapter 3: De ta i l ed Des i gn

This chapter describes the detailed design of EvLoc and libmagnitude and includes

the following topics:

■ EvLoc Data flow Model

■ libmagnitude Data Flow Model

■ EvLoc Processing Units

■ libmagnitude Processing Units

■ Primary libmagnitude Functional Areas

■ Data Description
t w a r e

e r 2 0 0 1 29

S o f t w a r e
I D C D O C U M E N T A T I O N

30
Chapter 3: De ta i l ed Des i gn

EVLOC DATA FLOW MODEL

EvLoc is an application that reads control data from one or more input parameter

files, acquires data from an input database, exchanges these data with

libmagnitude and libloc processing units, and records the returned event data in an

output database. This brief summary shows that EvLoc is primarily a bridge

between the database and the central global library processing units.

This chapter tabulates the components of each memory store used by EvLoc as

each store is introduced. The first column in each table (Tables 5 through 11) lists

the name of the component. The names of nested components are indented and

marked (“>”), and their parent components are listed in the Description column.

The second column indicates the data storage type. Table 4 describes each of the

possible types of data stored in the memory store components. The third column

describes the contents of the components. The fourth column (DD) indicates

whether the component is described further in “Data Description” on page 120.

The scope of each memory store is also noted as it is introduced. Each memory

store is classified either as “internal” or “external” in scope. A memory store is

“internal” if data in the store are stored, updated, or read solely within the applica-

tion or library. A memory store is “external” if data in the store are stored,

updated, or read by other applications or software libraries.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Figure 7 shows how the data flows into, through, and out of EvLoc. In this figure

and subsequent data flow diagrams, data flow lines are labeled with the database

tables and memory store components that are used as input to and output from

the processes. If an entire memory store component is not used, then the data flow

line is labeled with the appropriate nested components. Some memory store com-

ponents shown in Figure 7 are not discussed in this section, but are included in the

tables and discussed in “EvLoc Processing Units” on page 49.

TABLE 4: DESCRIPTION OF DATA STORAGE TYPES

Type Description

variables collection of numeric/character variables

simple structure C structure containing only numeric variables, character vari-
ables, arrays of numeric variables, or arrays of character vari-
ables

complex structure C structure containing at least one nested structure

nested structure C structure nested as a member of a complex structure (a
nested structure may be simple or complex)

array array of numeric variables, character variables, structures, or
pointers

linked list linked list of C structures (a linked list may be simple or complex
and may be nested)
31

t w a r e

e r 2 0 0 1

 S
e

p
te

m
b

e
r 2

0
0

1
 ID

C
-7

.1
.6

 E
v

e
n

t M
a

g
n

itu
d

e
 S

o
ftw

a
re

▼

C
h

a
p

te
r 3

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

32

parameter fileD1 output databaseDb2input databaseDb1

origin, stamag,
netmag,

event_control
(optional)

station- and
network-

magnitude
data

_tables()

1.4

write_evloc_db

Magnitude Results
Obtain Updated

event data

control-
parameter
data

3
origin, assoc,

,
,
ol

Evloc_Par

,

s,
oc,
itude,
mag

Ev
FIGURE 7. EVLOC DATA FLOW MODEL

processes
libmagnitude

2

1.1

read_evloc_par()

Control-parameter
Read

_tables()

1.2

read_evloc_db

Station Data
Read

_tables()

1.3

read_evloc_db

Event Data
Read

station dataM4
control-
parameter
data

M3

Site
Evloc_Par,
Mag_Params,

control
parameters

control
parameters

Data

read_evloc_db_tables()

Event_control

M5

M

event_control
(optional) site,

affiliation

parrival, amplitude,
stamag, netmag

Evloc_Par
Mag_Params

Event_contr

Evloc_Par

Site

Mag_Params,
Origin, Assoc,

Parrival, Amplitude
Stamag, Netmag,
Event_control

Mag_Param
Origin, Ass

Parrival, Ampl
Stamag, Net

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
The first process (1.1 in Figure 7) reads general control-parameter data from an

input parameter file (D1) and optionally reads magnitude control parameter data

from an event_control table in an input database account (Db1). The magnitude

control parameters are specified on an event-by-event basis in the event_control

table. The settings of the optional magnitude control parameters supersede the

settings of any corresponding default or general control parameters. The complete

set of control parameters control what input data are used and how subsequent

processing is performed. Process 1.1 stores all control parameters in an internal

control-parameter-data memory store (M3). Table 5 describes the components of

this memory store. read_evloc_par() reads and stores the data from the

parameter file, while read_evloc_db_tables() reads and stores the optional

data from the event_control table.

The second process (1.2 in Figure 7) reads station data from Db1. Control parame-

ters from the EvLoc_Par structure in M3 identify the input site and affiliation

database tables (Table 1 on page 13) and constrain the retrieved station data. The

station data are stored in an external station-data memory store (M4). Table 6

describes the components of this memory store. read_evloc_db_tables() per-

forms all of this processing.

TABLE 5: CONTROL-PARAMETER-DATA MEMORY STORE (M3)

Component Data Storage Type Description of Contents DD

EvLoc_Par simple structure EvLoc control parameters yes

Mag_Params simple structure magnitude control parameters used
during processing of magnitude data

yes

Event_control simple structure event location and magnitude con-
trol parameters (optional)

no

TABLE 6: STATION-DATA MEMORY STORE (M4)

Component Data Storage Type Description of Contents DD

Site simple structure station location data no
33

t w a r e

e r 2 0 0 1

34

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The third process (1.3 in Figure 7) reads event data from Db1. Control parameters

from the EvLoc_Par structure in M3 identify the input origin, assoc, parrival, ampli-

tude, stamag, and netmag database tables (Table 1 on page 13) and constrain the

retrieved event data. The event data are stored in an external event-data memory

store (M5). Table 7 describes the components of this memory store. The Mag_

Params and Event_control structures are also copied from M3 into M5. read_

evloc_db_tables() performs all of this processing.

TABLE 7: EVENT-DATA MEMORY STORE (M5)

Component Data Storage Type Description of Contents DD

Ev complex linked list variables and structures of event data
used to estimate and store locations/
magnitudes for one or more events;
each event is represented by a single
complex structure in a linked list

yes

> Origin simple nested
structure

origin for a particular event; nested
within the Ev linked list

no

> Assoc simple nested
structure

connects arrivals to a particular ori-
gin; nested within the Ev linked list

no

> Event_control simple nested
structure

event location and magnitude con-
trol parameters (optional); nested
within the Ev linked list

no

> Mag_ptr complex nested
structure

variables and structures of the event
(primarily magnitude) data; nested
within the Ev linked list

yes

>> Magnitude complex nested
structure

station amplitude and magnitude
data, network-magnitude data, and
magnitude specification data; nearly
all of the structure members are pop-
ulated in libmagnitude, nested within
the Mag_ptr structure

yes

> Mag_Params simple nested
structure

general magnitude control parame-
ters used during processing of mag-
nitude data; nested within the Ev
linked list

yes
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
The libmagnitude processing units read data subsets from M3, M4, and M5 and

estimate station/network magnitudes. libmagnitude stores the resulting station-

and network-magnitude data in Magnitude objects (see Table 54 on page 133). A

Magnitude object is a nested structure within the Mag_ptr structure, which itself

is a nested structure within the Ev linked list in M5. As a result, data in Magnitude

objects are accessible by EvLoc. Refer to “libmagnitude Data Flow Model” for

additional details regarding the data flow into, through, and out of libmagnitude.

The fourth process (1.4 in Figure 7) obtains updated station- and network-magni-

tude data from the Ev linked list in M5 and writes it to an output database (Db2).

Control parameters from the EvLoc_Par structure in M3 identify the output data-

base tables (Table 1 on page 13). The station- and network-magnitude data are

copied from the Stamag and Netmag structures (stored within the Magnitude

objects) and the Origin structures (stored within the Ev linked list) into analogous

database tables in the output database. write_evloc_db_tables() performs

all of this processing.

L IBMAGNITUDE DATA FLOW
MODEL

The libmagnitude software library handles all magnitude-related computations and

processing. As mentioned in “Conceptual Design” on page 10, the two primary

libmagnitude modes of operation are (1) estimating station-magnitude data and

(2) estimating network-magnitude data. This section describes how the data flows

Parrival simple structure predicted arrivals and associations for
origin-based amplitude measure-
ments

no

Amplitude simple structure amplitude measurements no

Stamag simple structure station-magnitude estimates no

Netmag simple structure network-magnitude estimates no

TABLE 7: EVENT-DATA MEMORY STORE (M5) (CONTINUED)

Component Data Storage Type Description of Contents DD
35

t w a r e

e r 2 0 0 1

36

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
into, through, and out of libmagnitude in each mode of operation. In addition, the

components of each libmagnitude memory store will be tabulated as each store is

introduced. The tables are structured analogously to those in “EvLoc Data flow

Model” on page 30. Refer to that section for descriptions of the columns associ-

ated with each table.

As with the EvLoc data flow diagram (Figure 7 on page 32), if an entire memory

store component is not used as input to or output from a process in the libmagni-

tude data flow diagrams, then the corresponding data flow line is labeled only with

the appropriate nested components. Some memory store components shown in

the libmagnitude data flow diagrams are not discussed in this section, but are

included in the tables and discussed in “libmagnitude Processing Units” on

page 62.

Sta t ion -magn i tude Mode

When an application operates in station-magnitude mode, libmagnitude estimates

a single station magnitude, uncertainty, and additional data given a single ampli-

tude and magtype. libmagnitude records these data in an external memory store,

which is accessible by the calling application upon completion of libmagnitude pro-

cessing.

Figure 8 shows how the data flows into, through, and out of libmagnitude in sta-

tion-magnitude mode. The calling application must first store station data, event

data, and control parameters in an external station, event, and control-parameter

data memory store (M6) before any libmagnitude processing can occur. The station

data reside in Site database table structures. The event data and control parame-

ters are stored in a number of constructs that are unique to each application. Typi-

cally these constructs are database table structures, such as Origin, Assoc,

Parrival, and Amplitude, along with one or more simple structures that store

the control parameters. Because the components of M6 vary by application, they

are not tabulated here.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design

FIGURE 8. LIBMAGNITUDE DATA FLOW MODEL IN STATION-MAGNITUDE
MODE

The first process (2.1 in Figure 8) reads earth-model data from a set of earth-model

files (D2) and stores the data in a memory store (M1). Station data and a subset of

control parameters from M6 are used to identify the proper earth-model files and

constrain the retrieved data. The files are composed of an MDF, a TLSF, and one or

more TLMs. Earth-model data read from D2 are stored in a primarily internal earth-

earth-model
D2 files

station, event, and
M6 control-parameter data

earth-model
M1 data

station-
M7 magnitude data

Application

1

facilities()

2.1

setup_mag_

model Data
Read Earth-

magnitude()

2.3

station_

magnitude Data
Estimate Station-

Mag_Descrip,
Mag_Sta_TLType,

TLType_Model_Descrip,
Sta_Pt,

TL_Table,

Mag_Descrip,
Mag_Sta_TLType,

Sta_TL_Model,

Sta_Pt,

TL_Table,

TLType_Model_Descrip,

TL_Model_Path,

Site,
control parameters

Site,
event data,

control parameters

event data,
magtype

SM_Info

SM_Info

TL_Pt,

Site

Site

TL_Pt,

earth-
model
data
37

t w a r e

e r 2 0 0 1

38

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
model-data memory store (M1). Table 8 describes the components of this data

store. Additional details of the M1 components are provided in “libmagnitude Pro-

cessing Units” on page 62 under the processing units that compose the Read

Earth-model Data process. The Mag_Descrip structure is an external component

of M1 because applications may change the values of its members (see “read_

mdf()” on page 77 for more details). This design feature is not indicated in

Figure 8.

TABLE 8: EARTH-MODEL-DATA MEMORY STORE (M1)

Component Data Storage Type Description of Contents DD

Mag_Descrip array of simple
structures

magnitude description data yes

Mag_Sta_TLType array of simple
structures

bulk-station-correction data yes

TLType_Model_Descrip complex structure default TLM description data yes

> List_of_Phz simple nested
linked list

linked list of phase names
nested within structure TLType_
Model_Descrip

no

Sta_TL_Model simple structure station-specific TLM descrip-
tion data

yes

TL_Model_Path simple structure TLM pathway data yes

Sta_Pt complex structure pointer to a simple linked list of
TL_Pt structures

no

TL_Pt simple linked list

or

simple nested
linked list

linked list of TLtypes

or

linked list of subset of station-
specific TLM description data;
nested within Sta_Pt

no
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
setup_mag_facilities() is the libmagnitude interface associated with the

Read Earth-model Data process. setup_mag_facilities() is typically only

called one time by an application. After the earth-model data are stored in mem-

ory, several libmagnitude processing units are available for applications to access

these data. This function is required in both station- and network-magnitude

modes.

The Estimate Station-magnitude Data process (2.3 in Figure 8) calculates a single

station magnitude, uncertainty, and additional station-magnitude data for a given

amplitude and magtype. Event data and a single magtype from the station, event,

and control-parameter data memory store (M6) are used to estimate an initial sta-

tion magnitude and to identify the earth-model data that should be retrieved from

several components of the earth-model-data memory store (M1; Table 8). This ini-

tial station magnitude is revised to produce a final station magnitude by applying

magnitude corrections retrieved from the earth-model data. The station-magni-

tude uncertainty is calculated as the root-mean-square of several error estimates

that are also retrieved from the earth-model data. The station magnitude, uncer-

tainty, and additional station-magnitude data (which include the applied magni-

tude corrections and error estimates) are stored in an external station-magnitude-

data memory store (M7 in Figure 8). Table 9 describes the components of this

memory store.

TL_Table complex structure transmission-loss and transmis-
sion-loss modeling-error data

yes

> TL_Mdl_Cor simple nested
structure

transmission-loss modeling-
error data; nested within the
TL_Table structure

yes

> TL_TS_Cor1 simple nested
structure

test-site correction data; nested
within the TL_Table structure

no

Site simple structure station location data no

1. This structure is not applicable to the IDC.

TABLE 8: EARTH-MODEL-DATA MEMORY STORE (M1) (CONTINUED)

Component Data Storage Type Description of Contents DD
39

t w a r e

e r 2 0 0 1

40

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
station_magnitude() is the libmagnitude interface associated with the Estimate

Station-magnitude Data process. station_magnitude() should be called multi-

ple times to process multiple amplitudes and magtypes associated with a single

event.

Figure 9 shows how the data flows into, through, and out of the Read Earth-model

Data process (2.1 in Figure 8), regardless of the mode of operation. The external

interface to this process is setup_mag_facilities(). While not explicitly

shown in Figure 9, setup_mag_facilities() calls other libmagnitude process-

ing units that in turn call read_mdf(), read_tlsf(), and read_tl_table()

(see Table 18 on page 63). These three functions read, parse, and store data from

the MDF, TLSF, and one or more TLMs, respectively. These functions are assigned

unique subprocess identifiers of the form “2.1.n” in Figure 9. The disk stores D2.a,

D2.b, and D2.c comprise the earth-model data disk store (D2 in Figure 8).

The first subprocess (2.1.1 in Figure 9) reads and parses magnitude description

(magnitude control) and bulk station-correction data from the MDF (D2.a) and

stores these data in the earth-model-data memory store (M1). An MDF pathname

and a list of magtypes from the station, event, and control-parameter data mem-

ory store (M6) identify which MDF is to be read and what data within the MDF are

stored in M1. read_mdf() performs this processing.

TABLE 9: STATION-MAGNITUDE-DATA MEMORY STORE (M7)

Component
Data Storage
Type Description of Contents DD

SM_Info simple structure station-magnitude data yes
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design

FIGURE 9. DETAILED DATA FLOW OF READ EARTH-MODEL DATA

The second subprocess (2.1.2 in Figure 9) reads and parses TLM pathway data,

default TLM description data, and station-specific TLM description data from the

TLSF (D2.b) and stores these data in M1. A TLSF pathname from M6 identifies

which TLSF is to be read. Station data from M6 and a list of TLtypes from M1 iden-

tify what data within the TLSF are stored in M1. read_tlsf() performs this pro-

cessing.

station, event, and control-parameter dataM6

earth-model dataM1

MDFD2.a TLSFD2.b TLMsD2.c

2.1.1

read_mdf()

MDF Data
Read

2.1.3

read_tlsf()

TLM Data
Read

2.1.2

read_tlsf()

TLSF Data
Read

TL_Pt

read_tl_table()

TL_Table

magtypes,
MDF

pathname

Site,
TLSF

pathname

magnitude

and bulk-
station-

correction

description

data

TLM pathname
and description

data

distance/depth magnitude
corrections

and modeling
errors

Mag_Descrip,

TL_Pt
Mag_Sta_TLType,

TLType_Model_Descrip,
Sta_TL_Model,

 Site
TL_Model_Path, Sta_Pt,

TLType_Model_Descrip,
Sta_TL_Model,
TL_Model_Path
41

t w a r e

e r 2 0 0 1

42

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The third subprocess (2.1.3 in Figure 9) reads and parses distance/depth-depen-

dent transmission-loss (that is, magnitude correction) data and modeling errors

from one or more TLMs (D2.c) and stores these data in M1. Components (root

names and suffixes) necessary to construct the full path names of the TLMs are

read from the TLM pathway data and TLM description data stored in M1. read_

tlsf() and read_tl_table() perform this processing.

Network -magn i tude Mode

When an application operates in network-magnitude mode, libmagnitude is used

to estimate station and network magnitudes, uncertainties, and additional magni-

tude data. libmagnitude stores these data in two external memory stores that may

be accessed by the calling application upon completion of libmagnitude processing.

The station-magnitude mode processes are required in network-magnitude mode.

Figure 10 shows how the data flows into, through, and out of libmagnitude in the

network-magnitude mode. The calling application must first store station data,

event data, and control parameters in a station, event, and control-parameter data

memory store (M6). Table 10 describes the components of this memory store. The

general control parameters are stored in constructs unique to each application. In

the case where EvLoc is the calling application, the station-data memory store (M4

in Figure 7 on page 32; Table 6 on page 33) and portions of the control-parame-

ter-data memory store (M3 in Figure 7; Table 5 on page 33) and event-data mem-

ory store (M5 in Figure 7; Table 7 on page 34) combine to form M6.

The Read Earth-model Data process (2.1 in Figure 10) reads earth-model and con-

trol data from a set of earth-model files (D2) and stores these data in an internal

earth-model-data memory store (M1; Table 8 on page 38). The description of the

data flow into, through, and out of this process in network-magnitude mode is

identical to that in station-magnitude mode (Figure 8 on page 37). setup_mag_

facilities() is the libmagnitude interface associated with the Read Earth-model

Data process. It must be called prior to any other libmagnitude process.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

43
ID

C
-7

.1
.6

 S
e

p
te

m
b

e
r 2

0
0

1

E
v

e
n

t M
a

g
n

itu
d

e
 S

o
ftw

a
re

▼

C
h

a
p

te
r 3

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

ude

2.4

calc_mags()

Network-
Estimate

agnitude Data

gin,
arams

updated
Origin
(optional)

Cntrl,
_Aux,
g, Netmag

updated
Stamag and
Netmag
FIGURE 10. LIBMAGNITUDE DATA FLOW IN NETWORK-MAGNITUDE MODE

earth-model
M1 data

Magnit

earth-model
D2 files

station, event, and control-parameter dataM6

magnitude dataM2

facilities()

2.1

setup_mag_

model Data
Read Earth-

2.2

build_mag_obj()

Data Store
Build Magnitude

2.3

calc_mags()

Station-
Estimate

magnitude Data m

Site,
control

parameters
Origin

Ori
Mag_P

updated
Origin (optional)

Site, Origin, Assoc, Parrival,
 Amplitude, Stamag, Netmag,

updated
Stamag

Application

1

Mag_Params, control parameters

Mag_Descrip, Mag_Sta_TLType,
TLType_Model_Descrip,

Sta_TL_Model, TL_Model_Path,
Sta_Pt, TL_Pt, TL_Table, Site

Mag_Cntrl, SM_Aux,
Amplitude,

Stamag, Netmag

Mag_Cntrl,
 Amplitude, Stamag

Origin, Assoc, Parrival,
Amplitude, Stamag,
Netmag, magtypes

Mag_
SM

Stama

earth-model
data

Mag_Descrip,

TLType_Model_Descrip,
Sta_Pt, TL_Pt,
TL_Table, Site

Mag_Sta_TLType,
Mag_Descrip,

TLType_Model_Descrip,
Sta_Pt, TL_Tt,
TL_Table, Site

44

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The Build Magnitude Data Store process (2.2 in Figure 10) stores event and magni-

tude specification data on an event-by-event basis in memory store M2. A list of

magtypes from the control-parameter variables stored in M6 are used to constrain

which event data from M6 are stored in M2. Table 10 describes these components.

The constrained event data, which are primarily elements of the Amplitude,

Stamag, and Netmag database table structures, are stored within an array of

Magnitude objects (Table 54 on page 133) in an external magnitude-data mem-

ory store (M2). Table 11 describes the components of this memory store. The list

of magtypes also identifies which magnitude description data in the Mag_Descrip

structures (M1; Table 8 on page 38) are copied and stored as magnitude specifica-

tion data in the Mag_Cntrl structures within the array of Magnitude objects. The

consolidation of data from M6 and M1 into M2 permits convenient access to the

data during the station- and network-magnitude estimation processes.

TABLE 10: STATION, EVENT, AND CONTROL-PARAMETER DATA
MEMORY STORE (M6)

Component
Data Storage
Type Description of Contents DD

Site simple structure station location data no

Origin simple structure origin information for particular event no

Assoc simple structure arrival association information no

Parrival simple structure predicted arrivals and associations for
origin-based amplitude measure-
ments

no

Amplitude simple structure amplitude measurements no

Stamag simple structure station-magnitude estimates no

Netmag simple structure network-magnitude estimates no

Mag_Params simple structure magnitude control parameters used
during processing of magnitude data

yes

control
parameters

variables general control parameters no
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
build_mag_obj() is the libmagnitude interface associated with the Build Magni-

tude Data Store process. build_mag_obj() builds a Magnitude object for each

event with assistance from other lower-level libmagnitude processing units.

build_mag_obj() should be called once for each distinct event processed. The

data in a Magnitude object, particularly the magnitude specification data and

auxiliary station-magnitude data, may be optionally revised for each event by the

application after completion of this process, but before execution of the Estimate

Station-magnitude Data process and the Estimate Network-magnitude Data process

(2.3 and 2.4, respectively). This is a design feature for Magnitude objects. This

feature is not indicated in Figure 10.

TABLE 11: MAGNITUDE-DATA MEMORY STORE (M2)

Component Data Storage Type Description of Contents DD

Magnitude complex structure station amplitude and magnitude data,
network-magnitude data, and magnitude
specification data

yes

> Mag_Cntrl simple nested
structure

magnitude specification data; nested
within Magnitude object

no1

1. This structure contains a subset of the data stored in the Mag_Descrip structure.

> SM_Aux simple nested
structure

auxiliary station-magnitude data; nested
within Magnitude object

yes

> Amplitude simple nested
structure

amplitude measurements; nested within
Magnitude object

no

> Stamag simple nested
structure

station-magnitude estimates; nested
within Magnitude object

no

> Netmag simple nested
structure

network-magnitude estimates; nested
within Magnitude object

no

SM_Sub2

2. This structure is used to pass station-magnitude data between processing units in the
Estimate Network-magnitude Data process

simple structure station-magnitude data subset yes
45

t w a r e

e r 2 0 0 1

46

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The Estimate Station-magnitude Data process (2.3 in Figure 10) estimates station

magnitudes, uncertainties, and additional station-magnitude data for multiple

amplitudes and magtypes associated with a single event. The description of the

data flow into, through, and out of this process is similar to that in station-magni-

tude mode (Figure 8 on page 37). The inputs to this process are the same as in sta-

tion-magnitude mode, but the data are retrieved from different memory stores.

The source for most of the event data is the magnitude-data memory store (M2;

Table 11), but the event location comes from the Origin structure in the station,

event, and control-parameter data memory store (M6; Table 10). The data source

for the list of magtypes is the Mag_Cntrl structure in M2. The source for the

earth-model data is the earth-model-data memory store (M1; Table 8 on page 38),

as it was in station-magnitude mode.

The station-magnitude data are estimated the same way as described for the Esti-

mate Station-magnitude Data process in station-magnitude mode (2.3 in Figure 8

on page 37). However, the station-magnitude data are not structured or stored in

quite the same way. The station-magnitude-data memory store (M7 in Figure 8;

Table 9 on page 40) is still populated within the Estimate Station-magnitude Data

process (2.3 in Figure 10), but it is not accessed by other libmagnitude processes or

external applications. As a result, the station-magnitude-data memory store is an

internal memory store and is not shown in Figure 10. The station magnitudes and

uncertainties estimated in the Estimate Station-magnitude Data process in network-

magnitude mode are stored in the Stamag database table structures within M2.

calc_mags() is the libmagnitude interface associated with the Estimate Station-

magnitude Data process. calc_mags() should be called once for each distinct

event processed. calc_mags() in turn calls station_magnitude() for each

valid amplitude datum for a given magtype. Multiple network magnitudes may be

determined for a single event.

The Estimate Network-magnitude Data process (2.4 in Figure 10) estimates net-

work-magnitude data for multiple magtypes associated with a single event and

stores the results in two memory stores. Governed by the control parameters

retrieved from M6 (Table 10) and the magnitude specification data retrieved from

M2 (Table 11), the processing units within this process estimate network magni-
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
tudes, uncertainties, and additional magnitude data using station magnitudes and

uncertainties retrieved from M2. The network-magnitude uncertainties are stan-

dard deviations of means of the input station magnitudes. The resulting network

magnitudes, uncertainties, and ancillary network-magnitude data are stored in the

Netmag database table structures within M2. The resulting network magnitudes

are also optionally written to Origin database table structures retrieved from M6.

The station-magnitude residuals are stored in the Stamag database table struc-

tures within M2.

calc_mags() is also the libmagnitude interface associated with the Estimate Net-

work-magnitude Data process. calc_mags() estimates network-magnitude data

with assistance from other lower-level libmagnitude processing units. calc_

mags() should be called once for each event.

Figure 11 shows how the data flows into, through, and out of the Estimate Net-

work-magnitude Data process (2.4 in Figure 10). The external interface to this pro-

cess is calc_mags(). calc_mags() in turn calls network_mag(), only_

bound_amps(), mag_max_lik(), and mag_boot_strap() to estimate net-

work-magnitude data using various magnitude algorithms. These functions are

assigned unique subprocess identifiers of the form “2.4.n” in Figure 11. The inputs

to and outputs from each process are nearly identical to the inputs and outputs

described previously for the Estimate Network-magnitude Data process (2.4). The

only difference is the type of network-magnitude data estimated (that is, what

algorithm was used) by each process.

The first subprocess (2.4.1 in Figure 11) estimates network-average magnitudes

and uncertainties for one or more magtypes associated with a single event. The

network-average magnitude data and corresponding station-magnitude residuals

are stored in the magnitude-data memory store (M2 in Figure 11). The network-

average magnitudes are optionally stored in the station, event, and control-param-

eter data memory store (M6 in Figure 11). network_mag() and calc_mags()

perform this processing.
47

t w a r e

e r 2 0 0 1

 S
e

p
te

m
b

e
r 2

0
0

1
 ID

C
-7

.1
.6

 E
v

e
n

t M
a

g
n

itu
d

e
 S

o
ftw

a
re

▼

C
h

a
p

te
r 3

:

D
e

ta
ile

d
 D

e
s
ig

n

S
o

ftw
a

re
I

D
C

D

O
C

U
M

E
N

T
A

T
I

O
N

48

 DATA

station, event, and control-parameter dataM6

Origin,
Mag_Params

updated
Origin with

bootstrapped MLE
magnitudes
(optional)

updated
Stamag and
Netmag with
bootstrapped

MLE
magnitude

data

Mag_Cntrl,
Sm_Aux
Stamag
Netmag

calc_mags()

2.4.4

mag_boot_strap()

with Bootstrapping
Estimate MLE

mag_max_lik()
FIGURE 11. DETAILED DATA FLOW OF ESTIMATE NETWORK-MAGNITUDE

calc_mags()

2.4.1

network_mag()

Network Average
Estimate

calc_mags()

2.4.2

only_bound_amps()

or Lower Bound
Estimate Upper

calc_mags()

2.4.3

mag_max_lik()

MLE
Estimate

magnitude dataM2

updated
Origin with

MLE
magnitudes
(optional)

updated
Origin with

upper- or lower-
bound

magnitudes
(optional)

Origin,
Mag_Params

updated
Origin with

network-
average

magnitudes
(optional)

Origin,
Mag_Params

Origin,
Mag_Params

Mag_Ctrl,
Sm_Aux,
Stamag
Netmag

updated
Stamag and
Netmag

with network-
average

magnitude
data

Mag_Cntrl,
Sm_Aux
Stamag
Netmag

Mag_Cntrl,
Sm_Aux
Stamag
Netmag

updated
Stamag and
Netmag with

 upper- or lower-
bound

magnitude
data

updated
Stamag and
Netmag with

MLE
magnitude

data

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
The second subprocess (2.4.2 in Figure 11) estimates upper- or lower-bound mag-

nitudes and uncertainties for one or more magtypes associated with a single event.

The upper- or lower-bound magnitude data and corresponding station-magnitude

residuals are stored in M2. The upper- or lower-bound magnitudes are optionally

stored in M6. only_bound_amps() and calc_mags() perform this processing.

The Estimate MLE process (2.4.3 in Figure 11) estimates MLE magnitudes and

uncertainties for one or more magtypes associated with a single event. The MLE-

magnitude data and corresponding station-magnitude residuals are stored in M2.

The MLE magnitudes are optionally stored in M6. mag_max_lik() and calc_

mags() perform this processing.

The fourth subprocess (2.4.4 in Figure 11) estimates MLE magnitudes and uncer-

tainties via bootstrap resampling [McL88] for one or more magtypes associated

with a single event. The bootstrapped MLE-magnitude data and corresponding

station-magnitude residuals are stored in M2. The bootstrapped MLE magnitudes

are optionally stored in M6. mag_boot_strap(), mag_max_lik(), and calc_

mags() perform this processing.

EVLOC PROCESS ING UNITS

The EvLoc portion of the Event Magnitude software includes nine processing units,

which are listed in Table 12. This table lists the hierarchy of the processes with

respect to one another and to processing units from several global software librar-

ies. The table structure follows the control flow: the highest-level processing units

are listed first, followed by the lower-level processing units in the order they are

called.

The four most important processing units related to magnitude processing are

listed below. The following paragraphs describe the design of these units, including

any constraints or unusual features in the design. The logic of the software and any

applicable procedural commands are also provided. The remaining five processing

units, listed in Table 12, perform simple or low-level specialized tasks or sets of

tasks and are not described further.

■ main()
49

t w a r e

e r 2 0 0 1

50

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
■ read_evloc_par()

■ read_evloc_db_tables()

■ write_evloc_db_tables()

The description of each processing unit includes a table that describes its input and

output variables. Each table lists the name and data type and describes each input

or output variable. In addition, the Use column assigns each variable a classifica-

tion that indicates how the variable is used. The value is “A” if the variable is input

or output through the processing unit’s argument list and “R” if the variable is the

return value from the processing unit.

TABLE 12: HIERARCHY OF EVLOC PROCESSING UNITS

Processing Unit Description Called from Calls to

main() estimates event
locations and mag-
nitudes through
calls to other EvLoc
and global library
functions

command line read_evloc_par(),
read_evloc_db_
tables(),
write_evloc_db_
tables(),
make_predicts();
libmagnitude, libloc,
libpar, and libstdtime
functions

read_evloc_
par()

reads control-
parameter data

main() evloc_init_par();
libmagnitude, libloc,
and libpar functions

read_evloc_
db_tables()

reads station,
event, and control
data from input
database tables

main() setup_ev_cntrl_table(),
reset_loc_controls(),
reset_mag_controls();
libmagnitude, libloc,
and libgdi functions

make_
predicts()

computes theoreti-
cal travel-time, azi-
muth, and
slowness data for
detections associ-
ated to event

main() write_evloc_db_
tables();
libloc and libgeog
functions
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
main ()

main() is the primary EvLoc processing unit. It calls other EvLoc processing units

and global library functions to estimate magnitude data.

I nput /P rocess ing /Output

main() is the highest-level EvLoc processing unit. It initiates four EvLoc processes

(Figure 7 on page 32) to estimate station- and network-magnitude data.

write_
evloc_db_
tables()

writes updated
event and control
data to output
database tables

main(),
make_
predicts()

libgdi and libstdtime
functions

evloc_init_
par()

initializes control-
parameter struc-
ture (see Table 5
on page 33) to the
default values

read_
evloc_
par()

none

setup_ev_
cntrl_table()

initializes event-
location and mag-
nitude control
structures (see
Table 7 on
page 34) to the
default values

read_
evloc_db_
tables()

none

reset_loc_
controls()

changes locator
control-parameter
settings

read_
evloc_db_
tables()

none

reset_mag_
controls()

changes magni-
tude control
parameter (see
Table 7 on
page 34) settings

read_
evloc_db_
tables()

libmagnitude functions

TABLE 12: HIERARCHY OF EVLOC PROCESSING UNITS (CONTINUED)

Processing Unit Description Called from Calls to
51

t w a r e

e r 2 0 0 1

52

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 13 describes the input variables to main(). These variables are command

line arguments.

A typical command line for executing EvLoc is:

EvLoc par=EvLoc.par

where EvLoc.par is the name of an input parameter file containing control-

parameter arguments.

main() calls read_evloc_par() (see Table 12 for hierarchy) to read control-

parameter data from an input parameter file. It also calls read_evloc_db_

tables() to read station and event data and optional magnitude control parame-

ters from input database tables. main() calls libmagnitude functions to estimate

magnitude data. It obtains station- and network-magnitude results from libmagni-

tude functions and updates members of magnitude-related structures. Finally,

main() calls write_evloc_db_tables() to write the resulting magnitude data

to output database tables.

main() terminates with a status code upon completion of processing.

I n te r f aces

main() calls the lower-level EvLoc processing units listed in Table 12.

main() also calls processing units from several global libraries (Table 12). It calls

the libmagnitude processing unit calc_mags() to estimate station- and network-

magnitude data. main() also calls the libloc processing unit locate_event() to

determine event hypocenters. main() calls the libpar processing unit setpar() to

TABLE 13: INPUT VARIABLES TO MAIN()

Type
Variable
Name Use Description

int argc A number of fields on command line

char ** argv A array of character strings entered on command line
and separated by spaces
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
parse environment and command line arguments, and endpar() to clean up

memory associated with reading the input parameter file. main() also calls the lib-

stdtime processing unit stdtime_get_epoch() to retrieve the current system

time in epoch seconds. Refer to the libpar and libstdtime man pages for descrip-

tions of the interfaces.

Er ro r S ta tes

main() interprets the status codes or return values returned from the EvLoc pro-

cessing units read_evloc_par() and read_evloc_db_tables() (see Table 12

for hierarchy). It also interprets the status codes or return values from the global

library functions: calc_mags(), setpar(), and stdtime_get_epoch(). OK

status codes or acceptable return values indicate to main() that processing was

successful. Error status codes or out-of-bounds return values indicate to main()

that it should terminate all further EvLoc processing and write an error message to

stderr.

main() writes the following error message to stderr and terminates further EvLoc

processing if the command line does not contain the name of an input parameter

file or a list of control parameters:

Usage: EvLoc par=par_filename

main() exits with an OK status code if read_evloc_db_tables() does not

retrieve any event data from the input database account.

read_ev loc_pa r ()

read_evloc_par() reads control-parameter data from an input parameter file

and stores the data in a memory store.

I nput /P rocess ing /Output

read_evloc_par() is called by main() as part of the Read Control-parameter

Data process (Figure 7 on page 32); read_evloc_par() does not require input

variables.
53

t w a r e

e r 2 0 0 1

54

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
read_evloc_par() reads general control parameters from an input parameter

file (D1 in Figure 7) and stores them in external memory. read_evloc_par()

parses the parameter file and stores the control parameters in several structures

that include the EvLoc_Par (Table 50 on page 125) and Mag_Params structures

(Table 51 on page 129). Only the EvLoc_Par and Mag_Params structures are dis-

cussed in this document because they store general and magnitude-specific control

parameters that control magnitude determinations. Refer to [IDC7.1.5] for

descriptions of other structures populated by read_evloc_par() that contain

event location control parameters.

read_evloc_par() returns the output variables listed in Table 14 to main().

The EvLoc_Par and Mag_Params structures are stored as components of the

control-parameter-data memory store (M3 in Figure 7 on page 32; Table 5 on

page 33).

I n te r f aces

Only main() calls read_evloc_par() within EvLoc (see Table 12). read_

evloc_par() requires that the lower-level EvLoc initialization function, evloc_

init_par(), be called.

read_evloc_par() also calls processing units from several global libraries

(Table 12). It calls the libmagnitude processing unit initialize_mag_

params() to define default settings for the Mag_Params structure and the libloc

processing unit initialize_loc_params() to define default settings for the

Locator_params structure [IDC-7.1.5]. read_evloc_par() also calls the libpar

TABLE 14: OUTPUT VARIABLES FROM READ_EVLOC_PAR()

Type
Variable
Name Use Description

int icode R status code

EvLoc_Par * evloc_par A pointer to EvLoc_Par structure

Mag_Params * mag_params A pointer to Mag_Params structure
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
processing units getpar() and mstspar() to read control-parameter arguments

from the input parameter file. (Refer to the libpar man page for descriptions of the

interfaces.)

Er ro r S ta tes

read_evloc_par() writes an error message to stderr and terminates all further

EvLoc processing if it attempts to read required control parameters that are not

present in the input parameter file. Examples of required control parameters are

database table names. See the EvLoc man page for a complete list of required con-

trol parameters.

read_evloc_par() writes an error message to stderr, terminates all further pro-

cessing within itself, and returns an error status code of Ð1 to main() if more than

200 stations are listed in a substation list.

If read_evloc_par() reads, parses, and stores the control parameters from the

input parameter file without encountering any error conditions, it returns an OK

status code to main().

read_ev loc_db_ tab le s ()

read_evloc_db_tables() reads station and event data and optional magni-

tude control parameters from an input database and stores the data in two mem-

ory stores.

I nput /P rocess ing /Output

read_evloc_db_tables() is called by main() as part of the Read Control-param-

eter Data process, the Read Station Data process, and the Read Event Data process

(Figure 7 on page 32). The input variables to read_evloc_db_tables() are

shown in Table 15. The data source for these variables is the control-parameter-

data memory store (M3 in Figure 7; Table 5 on page 33).
55

t w a r e

e r 2 0 0 1

56

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
read_evloc_db_tables() reads station data, event data, and optional magni-

tude control parameters from an input database account (Db1 in Figure 7) and

stores these data in two external memory stores. read_evloc_db_tables()

uses the Generic Database Interface (GDI) to dynamically link to and establish a

connection with the input database, retrieve records from the database, close the

connection, and handle any errors that occur during these processes.

read_evloc_db_tables() reads station data from a site table using two criteria.

First, the stations themselves must be affiliated with the station network specified

by the network member of the EvLoc_Par structure (Table 50 on page 125).

read_evloc_db_tables() retrieves the affiliations themselves from the input

affiliation table. Second, the stations must be installed and operational during the

time period being processed. read_evloc_db_tables() stores the station data

in an array of Site database table structures (see Table 2 on page 14).

read_evloc_db_tables() reads event data from the origin, assoc, parrival,

amplitude, stamag, and netmag tables. Two amplitude tables may be read; one may

contain arrival-based amplitude data (that is, amplitude data measured for an

arrival), and the other may contain origin-based amplitude data (that is, amplitude

data measured in a predicted time window relative to the origin). Both arrival-

based and origin-based amplitude data may be contained in the same amplitude

table.

read_evloc_db_tables() stores the event data from the parrival, amplitude,

stamag, and netmag tables in arrays of Parrival, Amplitude, Stamag, and

Netmag database table structures, respectively (see Table 2).

TABLE 15: INPUT VARIABLES TO READ_EVLOC_DB_TABLES()

Type
Variable
Name Use Description

EvLoc_Par * evloc_par A pointer to EvLoc_Par structure

Mag_Params * mag_params A pointer to Mag_Params structure
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
read_evloc_db_tables() stores the event data read from the origin and assoc

tables within an Ev linked list (Table 52 on page 130). For each record read from

the origin table, read_evloc_db_tables() creates an element of the linked list

and links it to any previous elements in the list. The origin record itself is stored in

an Origin database table structure (see Table 2) nested within the newly created

element of the Ev linked list. The assoc records associated with that origin are

stored in an array of Assoc structures also nested within the newly created

element.

After a new element is created in the Ev linked list, read_evloc_db_tables()

populates the Mag_Params and Mag_ptr component members of the element.

read_evloc_db_tables() copies the input Mag_Params structure (Table 51 on

page 129) into the Mag_Params component member of the new element. read_

evloc_db_tables() calls the libmagnitude interface build_mag_obj() to ini-

tialize and populate the Magnitude object (Table 54 on page 133) member of the

Mag_ptr structure (Table 53 on page 132) within the new element.

read_evloc_db_tables() optionally reads magnitude control parameters from

an input event_control table. The contents of any event_control records override

some of the magnitude control parameters set in the Mag_Params member of the

element of the Ev linked list corresponding to the event; the Mag_Params struc-

ture is updated accordingly. Each event_control record itself is also stored in an

Event_control database table structure (see Table 2) nested within the element

of the Ev linked list corresponding to the event.

read_evloc_db_tables() stores the station and event data and magnitude

control parameters in two memory stores. The station data are stored in a station-

data memory store (M4 in Figure 7 on page 32; Table 6 on page 33). The event

data and magnitude control parameters are stored in an event-data memory store

(M5 in Figure 7; Table 7 on page 34).

Table 16 describes the output variables returned from read_evloc_db_

tables() to main(). The num_events variable is 0 if no origin records were

retrieved from the origin table. Otherwise, num_events is the number of events

retrieved from the origin table for the time segment being processed.
57

t w a r e

e r 2 0 0 1

58

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

Only main() calls read_evloc_db_tables() within EvLoc. read_evloc_db_

tables() calls several lower-level EvLoc processing units (see Table 12 on

page 50).

read_evloc_db_tables() also calls processing units from several global librar-

ies (Table 12). It calls the libmagnitude processing units setup_mag_

facilities() to read the earth-model files, build_mag_obj() to store event

and magnitude data in internal memory, and copy_magnitudes() to copy mag-

nitude data from one Magnitude object (Table 54 on page 133) to another.

read_evloc_db_tables() also calls the libloc processing units setup_tt_

facilities() to read travel-time tables and read_sasc() to read slowness/

azimuth station correction data [IDC-7.1.5].

read_evloc_db_tables() also calls multiple libgdi processing units. It initializes

the GDI for dynamic linking to the input database and error handling by calls to

gdi_init() and gdi_error_init(), respectively. It calls gdi_open() to

establish a connection to the input database account. read_evloc_db_

tables() retrieves all records from database tables using gdi_get_

ArrayStructs(). If problems occur during any interaction with the database,

then gdi_error_get() returns information about the error to read_evloc_db_

TABLE 16: OUTPUT VARIABLES FROM READ_EVLOC_DB_TABLES()

Type
Variable
Name Use Description

int num_events R number of events read from the input origin database
table

Site ** sites A pointer to array of Site database table structures

int * num_sites A number of elements in array of Site database table
structures

Ev ** ev_anch A pointer to first element in Ev linked list
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
tables(). Finally, read_evloc_db_tables() calls gdi_close() to close the

database connection. Refer to the libgdi man page for descriptions of the inter-

faces.

Er ro r S ta tes

read_evloc_db_tables() interprets the status codes or return values returned

from all lower-level EvLoc and global library processing units that it calls (see

Table 12 on page 50 for hierarchy). OK status codes or acceptable return values

indicate to read_evloc_db_tables() that processing should continue. Error

status codes or out-of-bounds return values indicate to read_evloc_db_

tables() that it should terminate all further EvLoc processing and write an error

message to stderr.

read_evloc_db_tables() checks for memory allocation errors for each ele-

ment of the Ev linked list. If a memory allocation error occurs, then read_evloc_

db_tables() writes an error message to stderr and terminates all further EvLoc

processing.

wr i te_ev loc_db_ tab le s ()

write_evloc_db_tables() writes station- and network-magnitude data to an

output database.

I nput /P rocess ing /Output

write_evloc_db_tables() is called by main() as part of the Obtain Updated

Magnitude Results process (1.4 in Figure 7 on page 32). Table 17 describes the

input variables to write_evloc_db_tables(). The data source for the evloc_

par input variable is the station, event, and control-parameter data memory store

(M6 in Figure 8 on page 37; Table 5 on page 33). The data source for the ev_anch

input variable is the event-data memory store (M5 in Figure 7; Table 7 on

page 34).
59

t w a r e

e r 2 0 0 1

60

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
write_evloc_db_tables() retrieves station- and network-magnitude data

from memory and writes the data to an output database account (database store

Db2 in Figure 7). The input and output database accounts may be the same.

write_evloc_db_tables() uses the GDI to establish a connection to the output

database, retrieve a new set of magnitude identifiers (magids) from the lastid table,

clean old records from the input database account if the input and output

accounts are identical, write records to the database, close the connection, and

handle any errors that occur during these processes.

write_evloc_db_tables() inserts the station- and network-magnitude data

from the Stamag and Netmag database table structures (see Table 2 on page 14),

respectively, into the output stamag and netmag database tables. These structures

are nested within the Magnitude objects (Table 54 on page 133) that are them-

selves nested within the Mag_ptr structures (Table 53 on page 132) of each ele-

ment in the Ev linked list (Table 52 on page 130). write_evloc_db_tables()

assigns a unique magid to Stamag and Netmag elements for each distinct event

and magtype combination successfully computed.

write_evloc_db_tables() inserts the event data from the Origin database

table structures (Table 2) nested within each element of the Ev linked list into the

output origin database table. The data in the Origin structures includes network

magnitudes estimated for the processed events. These data may also include asso-

ciated magids from the Stamag and Netmag structures written to the magnitude

identifier members (mbid, msid, and mlid) of the Origin structures.

TABLE 17: INPUT VARIABLES TO WRITE_EVLOC_DB_TABLES()

Type
Variable
Name Use Description

EvLoc_Par evloc_par A EvLoc_Par structure

Ev ** ev_anch A pointer to first element in Ev linked list
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
write_evloc_db_tables() also optionally inserts the magnitude control data

from the Event_control database table structure (Table 2) within each element

of the Ev linked list into the output event_control table.

The only output of write_evloc_db_tables() is a status code that is returned

to main().

I n te r f aces

Only main() and make_predicts() call write_evloc_db_tables() (see

Table 12 on page 50). write_evloc_db_tables() does not call any lower-level

EvLoc processing units.

write_evloc_db_tables() calls processing units from several global libraries

(Table 12). It calls the libstdtime processing unit stdtime_get_lddate() to

compute an lddate, which is inserted in all database table structures whose con-

tents are written to the output database tables (Refer to the libstdtime man page

for a description of this interface).

write_evloc_db_tables() also calls multiple libgdi processing units. It initial-

izes the GDI for dynamic linking to the output database and error handling via calls

to gdi_init() and gdi_error_init(), respectively. It calls gdi_open() to

establish a connection to the output database account. write_evloc_db_

tables() retrieves magids from the lastid table using gdi_get_counter(). It

deletes old records from the origin, stamag, netmag, and event_control tables in the

input database account using gdi_submit(). write_evloc_db_tables() calls

gdi_add_ArrayStructs() to write records to the output database tables. If

problems occur during any interaction with the database, then gdi_error_get()

returns information about the error to write_evloc_db_tables(), and gdi_

rollback() reconstructs the initial state of the database account. If no problems

occur, then gdi_commit() commits the new records to the database. Finally,

write_evloc_db_tables() calls gdi_close() to close the database connec-

tion. (Refer to the libgdi man page for descriptions of the interfaces.)
61

t w a r e

e r 2 0 0 1

62

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

write_evloc_db_tables() interprets the status codes or return values returned

from all lower-level EvLoc and global library processing units that it calls (see

Table 12 on page 50 for hierarchy). OK status codes or acceptable return values

indicate to write_evloc_db_tables() that processing should continue. Error

status codes or out-of-bounds return values indicate to write_evloc_db_

tables() that it should terminate all further EvLoc processing and write an error

message to stderr.

L IBMAGNITUDE PROCESS ING UNITS

The libmagnitude portion of the Event Magnitude software includes 48 processing

units. For the remainder of this chapter, the term “processing unit” describes a par-

ticular libmagnitude entity. The role of each processing unit is identified more spe-

cifically by the terms “interface” and “function.” An interface is a processing unit

that exchanges data between an external application and one or more internal

libmagnitude processing units (external interface), or exchanges data between two

internal processing units (internal interface). A function is a processing unit that is

called by an interface or another function to perform a specific task or set of tasks.

The 48 libmagnitude processing units are listed in Tables 18 through 22. Tables 18

through 21 list the hierarchy of the 34 libmagnitude processing units that are asso-

ciated with each of the four processes shown in Figure 10 on page 43. Table 22

lists a number of additional utility functions provided in libmagnitude. Tables 18

through 21 are referred to as hierarchy tables, because they identify the hierarchy

of each libmagnitude processing unit with respect to applications and other

libmagnitude processing units within a particular process. These tables list all appli-

cations and processing units that call and are called by each processing unit. Their

structure is governed by control flow: external interfaces are identified first, fol-

lowed by any internal libmagnitude interfaces, and concluding with internal

libmagnitude functions. The internal interfaces and functions are listed in the order

they are called by a higher-level processing unit.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TABLE 18: HIERARCHY OF PROCESSING UNITS IN READ EARTH-MODEL
DATA PROCESS

Processing Unit Description Called from Calls to

setup_mag_
facilities()

external interface;
interfaces between
applications and lib-
magnitude process-
ing units that read
and store data from
earth-model files

applications (for
example, StaPro,
GA, WaveExpert,
EvLoc, and ARS)

setup_mc_
tables(),
set_sta_TL_pt(),
mag_error_msg()

setup_mc_
tables()

internal interface;
interfaces between
setup_mag_
facilities() and
functions that read
and store data from
earth-model files

setup_mag_
facilities()

read_mdf(),
mag_error_msg(),
read_tlsf(),
TL_error_msg()

set_sta_TL_pt() function; links sta-
tions to TLM descrip-
tion data

setup_mag_
facilities()

none

mag_error_msg() function; links mag-
nitude status code
with status message
string

setup_mag_
facilities(),
setup_mc_
tables()

none

read_mdf() function; reads mag-
nitude specification
and bulk-station-cor-
rection data from
single MDF; stores
data in earth-model-
data memory store
(Table 8 on page 38)

setup_mc_
tables()

none
63

t w a r e

e r 2 0 0 1

64

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
read_tlsf() internal interface and
function; reads TLM
pathway and TLM
description data from
single TLSF and
stores data in earth-
model-data memory
store (Table 8 on
page 38)

setup_mc_
tables()

free_tl_table(),
read_tl_table()

TL_error_msg() function; links trans-
mission-loss status
code with status
message string

setup_mc_
tables()

none

free_tl_table() function; frees mem-
ory allocated to
TLMs

read_tlsf() none

read_tl_table() function; reads trans-
mission-loss (magni-
tude correction) and
modeling error data
from single TLM and
stores data in earth-
model-data memory
store (Table 8 on
page 38)

read_tlsf() none

TABLE 18: HIERARCHY OF PROCESSING UNITS IN READ EARTH-MODEL
DATA PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TABLE 19: HIERARCHY OF PROCESSING UNITS IN BUILD MAGNITUDE

DATA STORE PROCESS

Processing Unit Description Called from Calls to

build_mag_obj() external interface
and function; stores
event and magni-
tude specification
data in Magnitude
objects (see Table 11
on page 45)

applications (for
example, EvLoc
and ARS)

get_magtype_
features(),
get_delta_for_
sta(),
valid_phase_for_
TLtype(),
valid_range_for_
TLtable()

copy_
magnitudes()

external interface
and function; copies
Magnitude objects
(see Table 11 on
page 45)

applications (for
example, EvLoc)

none

free_
magnitudes()

external interface
and function; frees
memory allocated to
Magnitude objects
(see Table 11 on
page 45)

applications (for
example, ARS)

none

get_magtype_
features()

external interface
and function; stores
magnitude specifica-
tion data in
Magnitude objects
(see Table 11 on
page 45)

applications (for
example, ARS),
build_mag_obj()

none

valid_phase_for_
TLtype()

external interface,
internal interface,
and function; deter-
mines whether phase
is valid for given
TLtype

applications (for
example, ARS),
build_mag_
obj()

get_TLMD_index()

valid_range_for_
TLtable()

internal interface and
function; determines
whether distance and
depth are valid for
given TLM

build_mag_
obj()

get_TL_indexes()
65

t w a r e

e r 2 0 0 1

66

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
get_delta_for_
sta()1

function; computes
event-to-station
distance

build_mag_
obj(),
calc_mags()

libgeog function
dist_azimuth()

get_TLMD_index() function; determines
index associated with
TLM for given
TLtype

valid_phase_
for_TLtype()

none

get_TL_
indexes()2

function; determines
indexes associated
with all lines in TLSF
and TLM for given
TLtype, station,
phase, and channel

get_mag_
indexes(),
valid_range_
for_TLtable()

none

1. This processing unit is also called in the Estimate Network-magnitude Data process.

2. This processing unit is also called in the Estimate Station-magnitude Data process.

TABLE 20: HIERARCHY OF PROCESSING UNITS IN ESTIMATE

STATION-MAGNITUDE DATA PROCESS

Processing Unit Description Called from Calls to

station_
magnitude()

external or internal
interface and func-
tion; estimates sta-
tion-magnitude
data

applications
(StaPro, GA, and
WaveExpert),
calc_mags(),1

abbrev_
sta_mag()

initialize_sm_
info(),
get_mag_indexes(),
interp_for_tl_
value(),
get_TL_ts_corr(),
get_tl_model_
error(),
get_meas_error()

get_delta_
for_sta()2

function; computes
event-to-station
distance

build_
mag_obj(),
calc_mags()1

libgeog function,
dist_azimuth()

TABLE 19: HIERARCHY OF PROCESSING UNITS IN BUILD MAGNITUDE

DATA STORE PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
initialize_
sm_info()

function; initializes
station-magnitude-
data memory store
(Table 9 on
page 40) to default
values

station_
magnitude()

none

get_
mag_indexes()

internal interface
and function;
determines indices
associated with all
lines in MDF and
TLSF for given
magtype, station,
phase, and channel

station_
magnitude()

get_TL_indexes()

interp_for_
tl_value()

function; retrieves
distance/depth-
dependent magni-
tude correction
from earth-model-
data memory store
(Table 8 on
page 38)

station_
magnitude()

libinterp function,
interpolate_
table_value()

get_TL_
ts_corr()3

function; retrieves
test-site correction
from earth-model-
data memory store
(Table 8 on
page 38)

station_
magnitude()

none

get_tl_
model_error()

function; retrieves
modeling error
from earth-model-
data memory store
(Table 8 on
page 38)

station_
magnitude()

none

get_meas_error() function; designed
to estimate mea-
surement error for
given snr

station_
magnitude()

none

TABLE 20: HIERARCHY OF PROCESSING UNITS IN ESTIMATE

STATION-MAGNITUDE DATA PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
67

t w a r e

e r 2 0 0 1

68

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
get_
TL_indexes()2

function; deter-
mines indexes asso-
ciated with all lines
in TLSF and TLM
for given TLtype,
station, phase, and
channel

get_mag_
indexes(),
valid_range_
for_TLtable()

none

abbrev_sta_mag() external interface
(obsolete); similar
to station_
magnitude(), but
returns less data to
application

none station_
magnitude()

1. This processing unit is considered to be part of the Estimate Network-magnitude Data pro-
cess, even though a portion of this processing unit is part of the Estimate Station-magnitude
Data process.

2. This processing unit is also called in the Build Magnitude Data Store process.

3. This processing unit is not applicable to the IDC.

TABLE 21: HIERARCHY OF PROCESSING UNITS IN ESTIMATE
NETWORK-MAGNITUDE DATA PROCESS

Processing Unit Description Called from Calls to

calc_mags() external interface
and function; esti-
mates network
magnitudes and
uncertainties for set
of magtypes

applications (for
example, EvLoc
and ARS)

get_delta_
for_sta(),1

station_
magnitude(),2

network_mag(),
mag_boot_strap(),
mag_get_compute_
upper_bounds()

TABLE 20: HIERARCHY OF PROCESSING UNITS IN ESTIMATE

STATION-MAGNITUDE DATA PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
initialize_mag_
params()

external interface
and function; initial-
izes magnitude con-
trol parameters (see
Table 10 on
page 44) to default
values

applications (for
example, EvLoc)

none

mag_set_
compute_upper_
bounds()

external interface
and function; sets
flag indicating
whether or not to
estimate upper-
bound magnitudes
and uncertainties

applications (for
example, EvLoc
and ARS)

none

network_mag() internal interface
and function; esti-
mates network-
average magnitude,
standard deviation,
and uncertainty

calc_mags() only_bound_
amps(),
mag_max_lik()

mag_boot_
strap()

internal interface
and function; esti-
mates MLE magni-
tude, standard
deviation, and two
uncertainties using
bootstrap resam-
pling

calc_mags() mag_max_lik()

mag_get_
compute_upper_
bounds()

function; retrieves
flag indicating
whether or not to
estimate upper-
bound magnitudes
and uncertainties

calc_mags() none

TABLE 21: HIERARCHY OF PROCESSING UNITS IN ESTIMATE
NETWORK-MAGNITUDE DATA PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
69

t w a r e

e r 2 0 0 1

70

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 22 lists the 14 libmagnitude processing units that are self-contained. Most of

them are not called by any application or other processing unit and are generally

not described outside of Table 22. However, calls to any of them could be inserted

into applications or other libmagnitude processing units in the future.

only_bound_
amps()

function; estimates
upper- or lower-
bound magnitude
and standard devia-
tion.a

network_mag() none

mag_max_lik() function; estimates
MLE magnitude and
standard deviation.a

network_mag(),
mag_boot_
strap()

none

1. This processing unit is also called in the Build Magnitude Data Store process.

2. This processing unit is considered to be part of the Estimate Station-magnitude Data process.

TABLE 22: STAND-ALONE PROCESSING UNITS

Processing Unit Description Called from Calls to

reset_algorithm() external interface and func-
tion; changes magnitude
algorithm code for given
magtype

none none

reset_amptypes() external interface and func-
tion; changes arrival-based
and origin-based amptype
identifiers for given magtype

none none

reset_sd_baseline() external interface and func-
tion; changes baseline uncer-
tainty for given magtype

none none

TABLE 21: HIERARCHY OF PROCESSING UNITS IN ESTIMATE
NETWORK-MAGNITUDE DATA PROCESS (CONTINUED)

Processing Unit Description Called from Calls to
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
reset_sd_limits() external interface and func-
tion; changes uncertainty
boundaries for given magtype

none none

reset_wgt_ave_flag() external interface and func-
tion; changes weighted aver-
age flag for given magtype

none none

reset_max_dist() external interface and func-
tion; changes maximum dis-
tance for a magtype

applications
(for example,
EvLoc and ARS)

none

reset_min_dist() external interface and func-
tion; changes minimum dis-
tance for a magtype

applications
(for example,
EvLoc and ARS)

none

revert_algorithm() external interface and func-
tion; reverts to magnitude
algorithm code specified in
magnitude description data
(see Table 8 on page 38) for
given magtype

none none

revert_amptypes() external interface and func-
tion; reverts to arrival-based
and origin-based amptype
identifiers specified in magni-
tude description data (see
Table 8 on page 38) for given
magtype

none none

revert_sd_baseline() external interface and func-
tion; reverts to baseline
uncertainty specified in mag-
nitude description data (see
Table 8 on page 38) for given
magtype

none none

revert_sd_limits() external interface and func-
tion; reverts to uncertainty
boundaries specified in mag-
nitude description data (see
Table 8 on page 38) for given
magtype

none none

TABLE 22: STAND-ALONE PROCESSING UNITS (CONTINUED)

Processing Unit Description Called from Calls to
71

t w a r e

e r 2 0 0 1

72

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Eleven processing units that are critical interface/functional components of the

four libmagnitude processes are listed below. The following paragraphs describe

the design of these units, including any constraints or unusual features in the

design. The logic of the software and any applicable procedural commands are also

provided. Design details of the remaining 37 processing units are not discussed

outside of Tables 18 through 22, because they are interfaces or functions that

perform simple or low-level specialized tasks or sets of tasks.

■ Read Earth-model Data process

– setup_mag_facilities()

– read_mdf()

– read_tlsf()

– read_tl_table()

■ Build Magnitude Data Store process

– build_mag_obj()

revert_wgt_ave_
flag()

external interface and func-
tion; reverts to setting of
weighted average flag speci-
fied in magnitude description
data (see Table 8 on page 38)
for given magtype

none none

revert_max_dist() external interface and func-
tion; reverts to maximum dis-
tance specified in magnitude
description data (see Table 8
on page 38) for given mag-
type

none none

revert_min_dist() external interface and func-
tion; reverts to minimum dis-
tance specified in magnitude
description data (see Table 8
on page 38) for given mag-
type

none none

TABLE 22: STAND-ALONE PROCESSING UNITS (CONTINUED)

Processing Unit Description Called from Calls to
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
■ Estimate Station-magnitude Data process

– station_magnitude()

■ Estimate Network-magnitude Data process

– calc_mags()

– network_mag()

– mag_boot_strap()

– mag_max_lik()

– only_bound_amps()

The description of each processing unit includes a table that describes its input and

output variables. Each table lists the name and data type, and describes each input

or output variable. In addition, the Use column assigns a classification to each vari-

able. The Use column is “A” (argument) if the variable is input or output through

the processing unit’s argument list, “M” (memory) if the variable is input or output

by reading to or writing from a static memory store, and it is “R” (return) if the

variable is the return value from the processing unit.

se tup_mag_ fac i l i t i e s ()

setup_mag_facilities() is the external interface between applications and

libmagnitude processing units that read the earth-model files and store the earth-

model data in internal memory structures.

I nput /P rocess ing /Output

setup_mag_facilities() is a core element of both the station- and network-

magnitude modes of operation. The external interface is called by an application

operating in either mode to initiate the Read Earth-model Data process (2.1 in

Figure 10 on page 43). Table 23 describes the input variables to setup_mag_

facilities().
73

t w a r e

e r 2 0 0 1

74

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The only output of setup_mag_facilities() is an integer status code that is

returned to the calling application.

I n te r f aces

All external applications that operate in either station- or network-magnitude

mode and require data from the earth-model files must call libmagnitude through

setup_mag_facilities(), as indicated in Figure 8 on page 37 and Figure 10

on page 43. StaPro, the GA Subsystem (including GAcons), WaveExpert, EvLoc, and

ARS all call setup_mag_facilities(). setup_mag_facilities() only needs

to be called once by an application.

setup_mag_facilities() calls the lower-level libmagnitude processing units

listed in Table 18 on page 63.

Er ro r S ta tes

setup_mag_facilities() is an external interface and is designed to be called

directly by an external application. As a result, the mdf_filename and tl_model_file-

name input arguments (Table 23) are checked within the lower-level functions

TABLE 23: INPUT VARIABLES TO SETUP_MAG_FACILITIES()

Type
Variable
Name Use Description

char * tl_model_filename A TLSF pathname

char * mdf_filename A MDF pathname

char ** list_of_magtypes A list of magtypes to be estimated

int num_magtypes A number of elements in list of magtypes

Site * sites A array of Site database table structures

int num_sites A number of elements in array of Site
structures
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
read_mdf() and read_tlsf(), respectively, to ensure that the MDF and TLSF

are located on the filesystem as specified. The application is responsible for ensur-

ing that the remaining input arguments contain valid data.

setup_mag_facilities(), setup_mc_tables(), set_sta_TL_pt(), read_

mdf(), read_tlsf(), and read_tl_table() return integer status codes to the

next higher-level interface (see Table 18 for hierarchy). The higher-level interfaces

interpret the status code and determine whether or not to continue processing.

Tables 24 and 25 describe these status codes, which are associated with reading,

linking, and storing data from the magnitude and transmission-loss files, respec-

tively. The Status Type column is either “OK,” “error,” or “warning.” An OK sta-

tus type indicates to the higher-level interface that it should continue its processing

because processing in the lower-level function was successful. A returned error

code tells the higher-level interface to terminate all further processing. A warning

status code indicates to the higher-level interface that part of its functionality

should be skipped. The Status Message String column specifies the message string

associated with the status code. setup_mag_facilities() and setup_mc_

tables() call mag_error_msg() and TL_error_msg() to write the message

string to stderr if error codes are returned to them from set_sta_TL_pt(),

read_mdf(), or read_tlsf(). The Source Processing Unit(s) column lists the

processing unit(s) that may report a specific status code condition.

TABLE 24: MAGNITUDE STATUS CODES

Status
Code

Status
Type Status Message String Source Processing Unit(s)

0 OK Magnitude: Successful
magnitude computed!

setup_mag_facilities(),
setup_mc_tables(),
set_sta_TL_pt(),
read_mdf()

1 error MDreadErr1: Cannot open MDF! read_mdf()

2 error MDreadErr2: MDF incorrectly
formatted!

read_mdf()

3 not used n/a n/a
75

t w a r e

e r 2 0 0 1

76

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
4 error MDreadErr4: Error
allocating memory while read-
ing mag info!

read_mdf()

5 error SSgetErr1: No input site
table info available for Sta_
Pt!

set_sta_TL_pt()

6 error SSgetErr2: Error
allocating memory while try-
ing to set Sta_Pt info!

set_sta_TL_pt()

7 not used n/a n/a

TABLE 25: TRANSMISSION-LOSS STATUS CODES

Status
Code

Status
Type Status Message String Source Processing Unit(s)

0 OK TL: Successful TL condition! setup_mag_facilities(),
setup_mc_tables(),
read_tlsf(),
read_tl_table()

1 warning TLreadWarn1: A requested TL
file was not found!

read_tl_table()

2 error TLreadErr1: Cannot open TLSF! read_tlsf()

3 error TLreadErr2: TLSF incorrectly
formatted!

read_tlsf()

4 error TLreadErr3: No TL tables
could be found!

read_tlsf()

5 error TLreadErr4: TL table incor-
rectly formatted!

read_tl_table()

6 error TLreadErr5: TL modelling
error table incorrectly
formatted!

read_tl_table()

TABLE 24: MAGNITUDE STATUS CODES (CONTINUED)

Status
Code

Status
Type Status Message String Source Processing Unit(s)
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
set_sta_TL_pt(), read_mdf(), read_tlsf(), and read_tl_table() write

an additional, more detailed message string to stderr if they encounter one of the

error or warning conditions listed in Tables 24 and 25.

OK status codes are passed upward through the processing unit hierarchy and are

ultimately returned to the calling application by setup_mag_facilities(),

unless overridden by an error code. Error status codes are also passed up the pro-

cessing unit hierarchy and are returned to the application. Warning status codes

are only passed upwards one level in the hierarchy and are replaced by either OK

or error status codes within the higher-level interface, depending on whether or

not the interface encounters an error condition.

read_mdf ()

read_mdf() is a function that reads data from an MDF and records the data in a

memory store.

I nput /P rocess ing /Output

read_mdf() is a function that is called by setup_mc_tables() as part of the

Read Earth-model Data process. See Figure 8 on page 37 and Figure 10 on page 43

for the relationship of this process to applications and other libmagnitude pro-

71 error TLreadErr6: TL test-site
corr. file incorrectly
formatted!

read_tl_table()

8 error TLreadErr7: Error allocating
memory while reading TL info!

read_tlsf(),
read_tl_table()

1. This status code is not applicable to the IDC.

TABLE 25: TRANSMISSION-LOSS STATUS CODES (CONTINUED)

Status
Code

Status
Type Status Message String Source Processing Unit(s)
77

t w a r e

e r 2 0 0 1

78

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
cesses. See Figure 9 on page 41 and Table 18 on page 63 for the relationship

between this function and other libmagnitude functions within the Read Earth-

model Data process.

Table 26 describes the input variables to read_mdf(). The data source for these

variables is the station, event, and control-parameter data memory store (M6 in

Figures 8, 9, and 10; Table 10 on page 44).

read_mdf() reads the MDF specified in the input variable mdf_filename. The

MDF (D2.a in Figure 9) is composed of two distinct sections. The first section con-

tains magnitude description (or magnitude control) data, and the second section

contains bulk-station-correction data.

The magnitude description data are lines of magnitude control settings for a spe-

cific magtype. read_mdf() parses the magnitude description data and stores each

line of the control settings in an element of an array of Mag_Descrip structures

(Table 55 on page 134). Only the magnitude control settings associated with the

magtypes specified in the input variable list_of_magtypes are stored in the array of

Mag_Descrip structures.

The values stored in the Mag_Descrip structure members det_amptype, ev_

amptype, algo_code, dist_min, dist_max, sglim1, sglim2, sgbase, and

apply_wgt may be changed by the application after control returns to the appli-

cation from setup_mag_facilities(). These original control settings are

stored in the analogously named Mag_Descrip component members prefixed

with orig_. To change the value of one of the modifiable members, the applica-

tion calls one of the external interfaces prefixed with reset_ (Table 22 on page 70).

TABLE 26: INPUT VARIABLES TO READ_MDF()

Type
Variable
Name Use Description

char * mdf_filename A MDF pathname

char ** list_of_magtypes A list of magtypes to be estimated

int num_req_magtypes A number of elements in list of magtypes
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
After the value of one of these structure members has been changed, the original

control settings may be recovered by the application from the orig_ members

through a call to the relevant interface prefixed with revert_ (Table 22).

read_mdf() identifies the unique TLtypes stored in the TLtype members of

Mag_Descrip. These unique TLtypes are copied into a linked list of TL_Pt struc-

tures. This linked list is used in read_tlsf() to define which TLSF data will be

stored in memory.

The second section of the MDF contains bulk-station-correction data. The bulk-

station-correction data are lines in the MDF of static magnitude corrections and

errors given for specific station and TLtype combinations. read_mdf() parses the

bulk-station-correction data and stores each line of data in an element of an array

of Mag_Sta_TLType structures (Table 56 on page 135). Any default bulk station

corrections and uncertainties associated with a particular TLtype are also stored in

the def_mag_corr and def_mag_corr_err members of the Mag_Descrip

structure.

read_mdf() returns the output variables listed in Table 27 to setup_mc_

tables(). All variables other than icode are stored as components of the earth-

model-data memory store.

TABLE 27: OUTPUT VARIABLES FROM READ_MDF()

Data Type Variable Name Use Description

int icode R status code

Mag_Descrip ** mag_descrip_ptr A pointer to array of Mag_Descrip
structures

int * num_md A number of elements in array of
Mag_Descrip structures

Mag_Sta_TLType ** mag_sta_tltype_ptr A pointer to array of
Mag_Sta_TLType structures

int * num_mst A number of elements in array of
Mag_Sta_TLType structures

TL_Pt ** list_of_TLtypes_ptr A pointer to linked list of TL_Pt
structures
79

t w a r e

e r 2 0 0 1

80

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

Only setup_mc_tables() calls read_mdf() (see Table 18 on page 63 for hier-

archy). read_mdf() does not call any lower-level libmagnitude processing units.

Er ro r S ta tes

read_mdf() is a function designed not to be called directly by an external appli-

cation. As a result, most of the input arguments in Table 26 are not checked within

read_mdf() to ensure valid content. An exception is mdf_filename, which is

checked for valid content.

read_mdf() writes an error message to stderr, terminates all further processing

within itself, and returns the appropriate error status code (Table 24 on page 75) to

setup_mc_tables() if it encounters an error condition. If read_mdf() reads, parses,

and stores the data from the MDF without encountering any error conditions, then

it returns an OK status code to setup_mc_tables().

read_ t l s f ()

read_tlsf() is a function that reads data from a TLSF and stores the data in a

memory store.

I nput /P rocess ing /Output

read_tlsf() is a function that is called by setup_mag_facilities() as part

of the Read Earth-model Data process. See Figures 8 on page 37 and 10 on page 43

for the relationship of this process to applications and other libmagnitude pro-

cesses. See Figure 9 on page 41 and Table 18 on page 63 for the relationship

between this function and other libmagnitude functions within the Read Earth-

model Data process.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Table 28 describes the input variables to read_tlsf(). The data source for the

list_of_TLtypes variable is the earth-model-data memory store (M1 in Figure 9;

Table 8 on page 38). The data source for the remaining variables is the station,

event, and control-parameter data memory store (M6 in Figures 8, 9, and 10;

Table 10 on page 44).

read_tlsf() reads the TLSF as specified in the input variable tl_model_filename.

The TLSF (D2.b in Figure 9) is composed of three distinct sections. The first section

contains TLM pathway data, the second section contains default TLM description

data, and the third section contains station-specific TLM description data. Each line

of the file specifies a particular element of this data.

The TLM pathway data are lines of TLM root names and pathways that specify the

directory locations of all TLMs relative to the directory location of the TLSF. read_

tlsf() parses the TLM pathway data and stores each line in an element of an

array of TL_Model_Path structures (Table 63 on page 141).

The second section of the TLSF contains default TLM description data. The default

TLM description data are lines of default TLM root names and phase data given for

specific TLtypes. The default TLM description data link TLtypes and phase names

to default TLMs. read_tlsf() parses the default TLM description data and stores

each line of data in an element of an array of TLType_Model_Descrip structures

(Table 61 on page 139). Default TLM description data are used in the absence of

any station-specific data.

TABLE 28: INPUT VARIABLES TO READ_TLSF()

Type Variable Name Use Description

char * tl_model_filename A TLSF pathname

TL_Pt * list_of_TLtypes A pointer to linked list of TL_Pt structures

Site * sites A array of Site database table structures

int num_sites A number of elements in array of Site
structures
81

t w a r e

e r 2 0 0 1

82

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The third section of the TLSF contains optional station-specific TLM description

data. The station-specific TLM description data are lines of station-specific root

names and phase and channel data given for specific station and TLtype combina-

tions. The station-specific TLM description data link stations, TLtypes, phase

names, and channel/frequency identifiers to station-specific TLMs. read_tlsf()

parses the station-specific TLM description data and stores each line of data in an

element of an array of Sta_TL_Model structures (Table 60 on page 138). Station-

specific TLM description data override default data for a given station and TLtype

combination.

read_tlsf() only stores the relevant data from these three TLSF sections in

internal memory. Only default TLM description data associated with the TLtypes

listed in the list_of_TLtypes input variable are stored in the array of TLType_

Model_Descrip structures. Only station-specific TLM description data associated

with the stations and TLtypes listed in the Site and list_of_TLtypes input variables

are stored in the array of Sta_TL_Model structures. In addition, only the TLM

pathway data with root names that are identical to default root names from the

default TLM description data are stored in the TL_Model_Path structures.

read_tlsf() calls read_tl_table() to read a single TLM and stores its data in

internal memory. read_tl_table() is called multiple times if multiple TLMs are

read. The default and station-specific TLM filenames are constructed in read_tl_

table() from the TLM pathway data and portions of the (default or station-spe-

cific) TLM description data. After read_tl_table() reads a TLM, it stores the

data in a TL_Table structure (Table 64 on page 141). Each time read_tl_

table() is called, it returns a pointer to the TL_Table structure to read_

tlsf(). read_tlsf() stores each pointer in an element of an array of pointers

to TL_Table structures.

read_tlsf() populates the output variables listed in Table 29. The icode is

returned to setup_mag_facilities(). The remaining variables are stored in

the earth-model-data memory store (M1 in Figures 8, 9, and 10; Table 8 on

page 38).
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I n te r f aces

Only setup_mc_tables() calls read_tlsf() (see Table 18 on page 63 for hierar-

chy). read_tlsf() calls the lower-level libmagnitude processing units read_tl_

table() and free_tl_table().

TABLE 29: OUTPUT VARIABLES FROM READ_TLSF()

Type Variable Name Use Description

int icode R status code

TL_Model_Path * tl_model_path M pointer to an array of
TL_Model_Path
structures

int num_TL_models M number of elements in
the TL_Model_Path
structures

TLType_Model_Descrip * tltype_model_descrip M pointer to an array of
TLType_Model_Descrip
structures

int num_TLMD M number of elements in
the TLType_Model_
Descrip structures

Sta_TL_Model * sta_tl_model M pointer to an array of
Sta_TL_Model structures

int num_STM M number of elements in
the Sta_TL_Model
structures

TL_Table ** tl_table_ptr M array of pointers to
TL_Table structures

int num_TL_tables M number of elements in
the array of pointers to
TL_Table structures
83

t w a r e

e r 2 0 0 1

84

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

read_tlsf() is a function designed not to be called directly by external applica-

tions. As a result, most of the input arguments in Table 28 are not checked within

read_tlsf() to ensure valid content. An exception is tl_model_filename, which is

checked for valid content.

read_tlsf() interprets the status code returned from read_tl_table() (see

Table 18 for hierarchy). Table 25 on page 76 lists the status codes that read_tl_

table() may return. An OK status code indicates to read_tlsf() that process-

ing was successful. Error status codes indicate to read_tlsf() that it should ter-

minate all further processing and return the same error code to setup_mc_

tables(). A warning status code indicates to read_tlsf() that the TLM file

was not found, so it should skip any further processing associated with this TLM.

read_tlsf() writes an error message to stderr, terminates all further processing

within itself, and returns the appropriate error status code (Table 25) to setup_

mc_tables() if it encounters an error condition. If read_tlsf() reads, parses,

and stores the data from the TLSF without encountering any error conditions, then

it returns an OK status code to setup_mc_tables().

read_tlsf() checks for warning conditions caused by reading redundant, dupli-

cate, or unusable station-specific TLM description data. If a station-specific TLM

description is identical to a default TLM description, identical to another station-

specific TLM description, or contains a TLtype that is not specified in the default

TLM description data, then the station-specific TLM description data are redun-

dant, duplicated, or unusable, respectively. read_tlsf() ignores this station-spe-

cific TLM description data, writes a warning message to stderr, and continues its

processing. The warning message is of the form:

read_tlsf: Warning! STM: <STA>/<TLTYPE>/<TLM ROOT NAME>

<SUMMARY>

STM line: <S-S TLM DATA>

will be ignored!
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
where <STA> is the station name, <TLTYPE> is the TLtype, and <TLM ROOT

NAME> is the root name associated with the station-specific TLM description data.

<S-S TLM DATA> is an entire line of station-specific TLM description data, including

any phase or channel/frequency dependencies. <SUMMARY> is a summary of the

warning condition encountered. Table 30 lists the summaries for the three warning

conditions.

read_ t l _ t ab le ()

read_tl_table() is a function that reads data from a TLM and stores the data in

a memory store.

I nput /P rocess ing /Output

read_tl_table() is a function that is called by read_tlsf() as part of the

Read Earth-model Data process. See Figure 8 on page 37 and Figure 10 on page 43

for the relationship of this process to applications and other libmagnitude pro-

cesses. See Figure 9 on page 41 and Table 18 on page 63 for the relationship

between this function and other libmagnitude functions within the Read Earth-

model Data process.

Table 31 describes the input variables to read_tl_table(). The data source for

these variables is the earth-model-data memory store (M1 in Figure 9; Table 8 on

page 38). The tl_model variable may contain the root name of a default or station-

specific TLM.

TABLE 30: READ_TLSF() WARNING SUMMARIES

Warning Condition Summary

redundant found to be redundant with info specified in
tltype_model_descrip!

duplicate found to be a duplicate with another STM record!

unusable not associated with any tltype_model_descrip TLtype
definition!
85

t w a r e

e r 2 0 0 1

86

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
read_tl_table() constructs the full TLM filename. The TLM filename is format-

ted from the input variables in Table 31 as follows:

dir_pathway/tl_model.TLtype.phase.chan

where the phase and chan suffixes are optional. These suffixes are only used if a

default or station-specific TLM is phase dependent or if a station-specific TLM is

channel/frequency-dependent. The phase and chan suffixes are only added to

the filename if they are character strings other than “-”.

read_tl_table() reads the default or station-specific TLM whose filename was

constructed above. A TLM (D2.c in Figure 9) is composed of two distinct sections.

The first section contains transmission-loss data, and the second section contains

transmission-loss modeling error data.

The transmission-loss (in the seismic case, magnitude correction) data are distance/

depth-dependent estimates of transmission loss. read_tl_table() parses the

distance and depth samples for which the transmission-loss values are estimated

and then parses the magnitude corrections themselves. The distances, depths, and

distance/depth transmission-loss values are stored in a TL_Table structure

(Table 64 on page 141).

The second section of the TLM contains transmission-loss modeling-error data.

The modeling errors are estimates of the transmission-loss values and may be dis-

tance/depth dependent, distance dependent only, or they may be condensed into

TABLE 31: INPUT VARIABLES TO READ_TL_TABLE()

Type
Variable
Name Use Description

char * dir_pathway A directory location of TLM relative to TLSF

char * TLtype A transmission-loss descriptor

char * tl_model A TLM root name

char * phase A phase name

char * chan A channel identifier
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
a single, global value representing the modeling error for the entire TLM. read_

tl_table() parses the distance and depth samples for which the modeling errors

are estimated and then parses the modeling errors themselves. The distances,

depths, and modeling errors are stored in a TL_Mdl_Err structure (Table 62 on

page 140) nested within the TL_Table structure (Table 64 on page 141).

read_tl_table() returns the output variables listed in Table 32 to read_

tlsf(). The TL_Table structure is stored as a component of the earth-model-

data memory store (M1 in Figures 8, 9, and 10; Table 8 on page 38) by read_

tlsf().

I n te r f aces

Only read_tlsf() calls read_tl_table() (see Table 18 on page 63 for hierar-

chy). read_tl_table() does not call any lower-level libmagnitude processing

units.

Er ro r S ta tes

read_tl_table() is a function designed not to be called directly by an external

application. As a result, most of the input arguments in Table 31 on page 86 are

not checked within read_tl_table() to ensure valid content. Exceptions are

phase and chan, which are checked for valid content.

read_tl_table() writes an error message to stderr, terminates all further pro-

cessing within itself, and returns the appropriate error or warning status code

(Table 25 on page 76) to read_tlsf() if it encounters an error or warning condi-

TABLE 32: OUTPUT VARIABLES FROM READ_TL_TABLE()

Type
Variable
Name Use Description

int icode R status code

TL_Table ** tl_table_ptr A pointer to pointer to TL_Table structure
87

t w a r e

e r 2 0 0 1

88

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
tion. If read_tl_table() reads, parses, and stores the data from the TLM with-

out encountering any error or warning conditions, it returns an OK status code to

read_tlsf().

bu i ld_mag_ob j ()

build_mag_obj() is the external interface and primary libmagnitude processing

unit for constructing and storing input event and magnitude specification data

associated with a single event in a memory store. These data are stored in

Magnitude objects.

I nput /P rocess ing /Output

build_mag_obj() is a core element of the network-magnitude mode of opera-

tion. The external interface is called by an application operating in this mode to ini-

tiate the Build Magnitude Data Store process (2.2 in Figure 10 on page 43).

build_mag_obj() is also the internal function that actually stores most of the

event data and magnitude specification data in internal memory.

Table 33 describes the input variables to build_mag_obj(). The data source for

these variables is the station, event, and control-parameter data memory store

(M6 in Figure 10; Table 10 on page 44). Refer to Table 2 on page 14 and

[IDC5.1.1Rev2] for descriptions of the database table structures and their corre-

sponding schema, respectively.

TABLE 33: INPUT VARIABLES TO BUILD_MAG_OBJ()

Type Variable Name Use Description

char ** list_of_magtypes A list of magtypes to be estimated

int num_magtypes A number of elements in list of magtypes

Origin * origin A pointer to Origin database table structure

Netmag * in_netmag A array of Netmag database table structures

int num_netmags A number of elements in array of Netmag
structure
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
build_mag_obj() stores input magnitude specification data and event data in an

array of Magnitude objects (Table 54 on page 133) for a single event. Each ele-

ment of the array of Magnitude objects is associated to one magtype passed in

through the list_of_magtypes input variable. Magnitude objects provide a conve-

nient way to bind amplitude and magnitude data together by magtype and to pass

these data between applications and libmagnitude processing units.

The magnitude specification data are magnitude control settings for specific mag-

types and are identical to some of the magnitude description data that read_

mdf() stores in the array of Mag_Descrip structures (Table 55 on page 134; pro-

cess 2.1 in Figure 10 on page 43). For each magtype listed in the list_of_

magtypes, build_mag_obj() calls get_magtypes_features() (see Table 19

on page 65 for hierarchy) to copy the first 11 members of the appropriate Mag_

Stamag * in_stamag A array of Stamag database table structures

int num_stamags A number of elements in array of Stamag
structures

Amplitude * det_amplitude A array of arrival-based Amplitude database
table structures

int num_det_amps A number of elements in array of arrival-
based Amplitude structures

Amplitude * ev_amplitude A array of origin-based Amplitude database
table structures

int num_ev_amps A number of elements in array of origin-
based Amplitude structures

Assoc * in_assoc A array of Assoc database table structures

int num_assocs A number of elements in array of Assoc struc-
tures

Parrival * in_parrival A array of Parrival database table structures

int num_parrivals A number of elements in array of Parrival
structures

TABLE 33: INPUT VARIABLES TO BUILD_MAG_OBJ() (CONTINUED)

Type Variable Name Use Description
89

t w a r e

e r 2 0 0 1

90

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Descrip structure into a Mag_Cntrl structure nested within the associated ele-

ment of the array of Magnitude objects. (Refer to the description of the Mag_

Descrip structure (Table 55) for a description of the Mag_Cntrl structure.) The

Mag_Cntrl structures contain magnitude specification data that an application

may modify for each processed event and magtype.

build_mag_obj() also stores event data in the array of Magnitude objects. The

event data consist of the input database table structures listed in Table 33 on

page 88. For each input magtype, certain element addresses of input Amplitude

and Stamag database table structures are stored in elements of the array of pointers

to Amplitude and Stamag structures within the Magnitude object. The

Amplitude addresses that are stored are those of the input Amplitude elements

that have amptype members matching either the arrival-based or origin-based

amptypes specified in the det_amptype or ev_amptype members of the Mag_

Cntrl element. The stored Stamag addresses are those of the input Stamag ele-

ments whose magtypes are identical to the given magtype being processed. Simi-

larly, the element of the Netmag structures, whose magtype is identical to the

magtype currently being processed, is stored in the Netmag structure attached to

the Magnitude object. The contents of such Stamag elements and Netmag

members are termed “pre-existing.”

In some cases, no input Stamag elements or Netmag component members are

associated with a particular magtype. In such cases, build_mag_obj() populates

the Stamag elements and Netmag component members of the Magnitude object

with data from the input Origin, Assoc, Amplitude, and Parrival structures.

Data from the Assoc structures are copied if the amptypes are arrival-based, and

data from the Parrival structures are copied if the amptypes are origin-based.

The auth member of each Stamag element is populated with the string “build_

mag_obj” to indicate that these elements were created by build_mag_obj()

during processing and were not retrieved from the database.

The event data stored in the Magnitude object for each magtype includes auxil-

iary station-magnitude data. build_mag_obj() uses data from each Amplitude

element to populate corresponding elements in an array of auxiliary station-mag-

nitude structures (SM_Aux; Table 57 on page 136).
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
An important build_mag_obj() and libmagnitude design decision is that the

data model must possess at least one Netmag structure, which corresponds to any

Stamag structures for a given magtype. That is, an array of pointers to Stamag

structures, without an associated Netmag structure, violates the libmagnitude data

model. Input data such as this cause libmagnitude to produce an incomplete Net-

mag structure member of the Magnitude object that contains N/A values in the

evid and magtype fields. A Netmag structure without an associated array of

pointers to Stamag structures also violates the data model. However, build_mag_

obj() controls this situation by copying data from other database table structures

into the Stamag elements of the Magnitude object.

build_mag_obj() stores the array of Magnitude objects in the magnitude-data

memory store (M2 in Figure 10; Table 11 on page 45). The only output returned

to the calling application from build_mag_obj() is a pointer to the array of

Magnitude objects.

I n te r f aces

All external applications that operate in network-magnitude mode and need to

store event and magnitude data in a memory store must call libmagnitude through

build_mag_obj(), as indicated in Figure 10. EvLoc and ARS call build_mag_

obj(). build_mag_obj() should be called once for each event processed. Appli-

cations that operate in station-magnitude mode do not require build_mag_

obj().

build_mag_obj() calls the lower-level libmagnitude processing units listed in

Table 19 on page 65.

Er ro r S ta tes

build_mag_obj() is an external interface and is designed to be called directly by

an external application. As a result, each magtype contained in the list_of_

magtypes input argument (Table 33 on page 88) is checked within the lower-level
91

t w a r e

e r 2 0 0 1

92

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
function get_magtype_features() to ensure that magnitude specification data

exists for it. The application is responsible for ensuring that the remaining input

arguments contain valid data.

build_mag_obj() interprets the status code or value returned from all lower-

level processing units it calls (see Table 19 on page 65 for hierarchy). OK status

codes or acceptable return values indicate to build_mag_obj() that processing

was successful. Error codes or out-of-bounds return values indicate to build_

mag_obj() that it should skip part of its functionality due to insufficient data.

build_mag_obj() writes an error message to stderr and terminates all further

processing associated with an input magtype if an error status code is returned

from get_magtype_features(). The error message is of the form:

Magtype: <MAGTYPE> is not specified within MDF

Hence, this magnitude cannot be computed!

where <MAGTYPE> is the magtype being processed.

build_mag_obj() checks for memory allocation errors for the array of

Magnitude objects. If a memory allocation error occurs, build_mag_obj()

returns a NULL pointer to the calling application.

s ta t ion_magn i tude ()

station_magnitude() is the external or internal interface (depending on which

mode the application is operating in) and primary libmagnitude processing unit for

computing a station magnitude and uncertainty.

I nput /P rocess ing /Output

station_magnitude() is a core element of both the station- and network-mag-

nitude modes of operation. The external interface is called by an application oper-

ating in station-magnitude mode to initiate the Estimate Station-magnitude Data

process (2.3 in Figure 8 on page 37). station_magnitude() is a interface that is

called by calc_mags() when an application is operating in network-magnitude
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
mode as part of the Estimate Station-magnitude Data process (2.3 in Figure 10 on

page 43). station_magnitude() is also the internal function that estimates sta-

tion-magnitude data in both modes of operation.

Table 34 describes the input variables to station_magnitude(). The data

source for these variables depends on what mode the application is operating in.

When the application is operating in station-magnitude mode, the data source for

all input arguments is the station, event, and control-parameter data memory store

(M6 in Figure 8 on page 37). When the application is operating in network-magni-

tude mode, the data source for the depth argument is also the station, event, and

control-parameter data memory store (M6 in Figure 10 on page 43; Table 10 on

page 44). The data source for the remaining arguments is the magnitude-data

memory store (M2 in Figure 10; Table 11 on page 45). Regardless of the mode of

operation, the data source for the input variables read from memory is the earth-

model-data memory store (M1 in Figures 8 and 10; Table 8).

TABLE 34: INPUT VARIABLES TO STATION_MAGNITUDE()

Type Variable Name Use Description

char * magtype A magnitude descriptor

char * sta A station code

char * phase A phase name

char * chan A channel identifier

Bool extrapolate A permit extrapolation of TLMs?
0 = no, 1 = yes

char * ts_region1 A magnitude test-site region descriptor

double distance A event-to-station distance (deg)

double ev_depth A origin depth (km)

double amp A measured amplitude (nm)

double period A measured period (s)

double duration A duration of amplitude window (s)

double snr A signal-to-noise ratio (not used)
93

t w a r e

e r 2 0 0 1

94

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
station_magnitude() estimates a station magnitude, uncertainty, and ancillary

station-magnitude data given a single amplitude and magtype. station_

magnitude() estimates an initial (non-path-corrected) station magnitude as a

function of the amp and period input variables. If both variables are out of bounds,

then the duration variable is substituted to estimate the initial station magnitude.

station_magnitude() estimates the final station magnitude by applying two

magnitude corrections to the initial station magnitude. The first magnitude correc-

tion is a distance/depth-dependent transmission-loss correction. station_

magnitude() passes the magtype, sta, phase, chan, distance, ev_depth, and

extrapolate variables to the lower-level functions get_mag_indexes() and

interp_for_tl_value(). interp_for_tl_value() retrieves the distance/

depth-dependent correction associated with the magtype-TLtype, station, phase

name, and channel identifier inputs from the correct TL_Table structure (Table 64

on page 141) and returns it to station_magnitude(). The TL_Table structures

are a component of the earth-model-data memory store (M1 in Figures 8 and 10;

Table 8).

The second magnitude correction is a bulk station correction. station_

magnitude() retrieves the bulk station correction associated with the input mag-

type-TLtype and the station from the input array of Mag_Sta_TLType structures

(Table 56 on page 135). If an input magtype-TLtype and station combination does

not have a bulk station correction associated with it, then station_

magnitude() retrieves a default bulk station correction from the input array of

Mag_Descrip structures (Table 55 on page 134).

Mag_Descrip * mag_descrip M array of Mag_Descrip structures

Mag_Sta_TLType * mag_sta_tltype M array of Mag_Sta_TLType structures

1. This variable is not applicable to the IDC.

TABLE 34: INPUT VARIABLES TO STATION_MAGNITUDE() (CONTINUED)

Type Variable Name Use Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
station_magnitude() also estimates a station-magnitude uncertainty. The

uncertainty is a root-mean-square (RMS) measure of a transmission-loss modeling

error and the bulk-station-correction error. To obtain a transmission-loss modeling

error, station_magnitude() passes the magtype, sta, phase, chan, distance, and

ev_depth to the lower-level functions get_mag_indexes() and get_tl_model_

error(). get_tl_model_error() retrieves the modeling error associated with

the magtype-TLtype, station, phase name, and channel identifier inputs from the

TL_Mdl_Err member (Table 62 on page 140) for the correct TL_Table structure

(Table 64 on page 141) and returns it to station_magnitude(). station_

magnitude() retrieves the bulk-station-correction error similar to retrieval of a

bulk station correction.

station_magnitude() stores the station magnitude, uncertainty, magnitude

corrections, transmission-loss modeling error, and bulk-station-correction error

data in a SM_Info structure (Table 58 on page 136).

station_magnitude() returns the output variables listed in Table 35. If the call-

ing application operates in station-magnitude mode, then station_

magnitude() stores the SM_Info structure in the station-magnitude-data mem-

ory store (M7 in Figure 8 on page 37; Table 9 on page 40) and returns a SM_Info

structure pointer to the application. If the application operates in network-magni-

tude mode, then the scope of the SM_Info structure is entirely within the Estimate

Station-magnitude Data process (2.3 in Figure 10 on page 43), so the structure is

not shown as a component of a memory store. station_magnitude() returns a

SM_Info structure pointer to calc_mags() in this latter case.

TABLE 35: OUTPUT VARIABLES FROM STATION_MAGNITUDE()

Type Variable Name Use Description

double sta_magnitude R station magnitude

SM_Info * sm_info A pointer to SM_Info structure
95

t w a r e

e r 2 0 0 1

96

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

All external applications that operate in station-magnitude mode must call

libmagnitude through station_magnitude() (Figure 8 on page 37). StaPro, the

GA Subsystem (including GAcons), and WaveExpert all call station_

magnitude(). station_magnitude() should be called once for each ampli-

tude/magtype processed.

All applications that operate in network-magnitude mode do not directly call

station_magnitude(). These applications call calc_mags() (Figure 10 on

page 43), which subsequently calls station_magnitude().

station_magnitude() calls the lower-level libmagnitude processing units listed

in Table 20 on page 66.

Er ro r S ta tes

station_magnitude() is an external interface when an external application

operates in station-magnitude mode, and it is a function when an application

operates in network-magnitude mode. Because station_magnitude() may be

called directly by an application, several of its input arguments (Table 34 on

page 93) are checked to ensure that they contain valid data. station_

magnitude() checks the amp and period arguments. The get_mag_indexes() func-

tion checks the magtype, sta, phase, and chan arguments. The interp_for_

tl_value() and get_tl_model_error() functions independently check the

distance argument. The application is responsible for ensuring the remaining

input arguments contain valid data.

station_magnitude() interprets the return value returned from all lower-level

processing units (see Table 20 on page 66 for hierarchy). Acceptable return values

indicate to station_magnitude() that processing was successful. Out-of-

bounds return values from get_mag_indexes() or interp_for_tl_value()

indicate to station_magnitude() that it should terminate all further processing.

station_magnitude() returns an N/A station magnitude to the calling applica-

tion or calc_mags(). An N/A value returned from get_tl_model_error()

indicates that a modeling error could not be retrieved from the TL_Table struc-
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
ture. station_magnitude() changes the modeling error from an N/A value to

the value of the sgbase member in the Mag_Descrip structure corresponding to

the magtype being processed. initialize_sm_info() does not identify or return any

possible error conditions. get_meas_error() is a dummy function that does not per-

form any processing.

ca l c _mags ()

calc_mags() is the external network-magnitude processing interface between

applications operating in network-magnitude mode and the libmagnitude process-

ing units that estimate station- and network-magnitude data. calc_mags() also

serves as a function that processes and stores station- and network-magnitude

data.

I nput /P rocess ing /Output

calc_mags() is a core element of the network-magnitude mode of operation.

The external interface is called by an application operating in this mode to initiate

both the Estimate Station-magnitude Data process (2.3 in Figure 10 on page 43)

and the Estimate Network-magnitude Data process (2.4 in Figure 10). calc_

mags() is also the internal function that processes station- and network-magni-

tude data and stores these data in two memory stores.

Table 36 describes the input variables to calc_mags(). The data source for the

pointer to the Magnitude object is the magnitude-data memory store (M2 in

Figure 10; Table 11 on page 45). The data source for the three remaining argu-

ments is the station, event, and control-parameter data memory store (M6 in

Figure 10; Table 10 on page 44). Refer to Table 2 on page 14 and [IDC5.1.1Rev2]

for descriptions of the Origin database table structure and its corresponding

schema, respectively.
97

t w a r e

e r 2 0 0 1

98

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
calc_mags() processes station- and network-magnitude data for each magtype

given an event. This processing includes calling station_magnitude() to esti-

mate station-magnitude data, identifying the magnitude-defining state of the

resulting station-magnitude data, estimating network magnitudes and uncertain-

ties from the magnitude-defining data, and storing the resulting station- and net-

work-magnitude data in two memory stores. The settings of certain magnitude

control parameters stored in the Mag_Params input structure (Table 51 on

page 129) control how calc_mags() processes the station- and network-magni-

tude data.

calc_mags() initiates the Estimate Station-magnitude Data process by calling

station_magnitude() to estimate station magnitudes and uncertainties for all

arrival-based and origin-based amplitudes associated with the current magtype

being processed. station_magnitude() returns each station magnitude to

calc_mags() as the return value (Table 35 on page 95); each uncertainty is

returned through the SM_Info structure (Table 35 and Table 58 on page 136).

calc_mags() copies the station magnitudes into the magnitude members of the

Stamag database table structures (Table 2 on page 14; [IDC5.1.1Rev2]) nested in

the Magnitude objects. The uncertainties are copied from the model_plus_

meas_error members of the SM_Info structures into the uncertainty mem-

bers of the Stamag structures if they are positive values and if weighted network-

average or weighted-MLE magnitudes will be requested. Otherwise, the N/A

uncertainty is stored in the Stamag structures.

TABLE 36: INPUT VARIABLES TO CALC_MAGS()

Type Variable Name Use Description

Magnitude * magn_ptr A pointer to Magnitude object

int num_magns A number of magtypes to be estimated

Origin * origin A pointer to Origin database table structure

Mag_Params * mag_params A pointer to Mag_Params structure
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
calc_mags() identifies the magnitude-defining state of each station magnitude

and uncertainty for a given magtype using several criteria. A “magnitude-defin-

ing” state means that the station magnitude and uncertainty will be used to esti-

mate a network magnitude and uncertainty. A “magnitude-nondefining” state

means that the station magnitude and uncertainty will not be used to determine

the network magnitude and uncertainty. All station magnitudes and uncertainties

are assumed to be magnitude-defining before the state-defining criteria are

applied. Applications may override the criteria for a particular amplitude or station

magnitude by switching the manual_override flag in the SM_Aux member

(Table 57 on page 136) of the Magnitude object to TRUE after calling build_

mag_obj(), but prior to calling calc_mags(). This design feature is not indicated

in Figure 10 on page 43. The states of the station magnitudes are recorded in the

magdef members of the Stamag structures. calc_mags() also updates the

delta and mmodel members of the Stamag structures. Finally, calc_mags()

copies each station magnitude, uncertainty, magnitude-defining state, and signal

type into an array of SM_Sub structures (Table 59 on page 138), which carries the

station-magnitude data amongst functions in the Estimate Network-magnitude

Data process.

All processing of the station-magnitude data are now complete. At this point, the

Estimate Station-magnitude Data process ends and the Estimate Network-magnitude

Data process begins (Figure 10 on page 43 and Figure 11 on page 48). calc_

mags() calls other libmagnitude processing units (see Table 21 on page 68 for

hierarchy) to estimate network magnitudes and uncertainties using the magnitude-

defining station magnitudes and uncertainties associated with each magtype.

libmagnitude functions may estimate weighted or unweighted network-average,

MLE, and upper- or lower-bound magnitudes and uncertainties (“Chapter 2:

Architectural Design” on page 9). calc_mags() calls network_mag() to esti-

mate initial network-average, MLE, and upper- or lower-bound magnitudes and

uncertainties. calc_mags() optionally calls mag_boot_strap() to estimate

MLE magnitudes, standard deviations, and uncertainties via bootstrap resampling

[McL88] of the defining station magnitudes and uncertainties.
99

t w a r e

e r 2 0 0 1

100

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
After an initial network magnitude is estimated, calc_mags() computes the sta-

tion-magnitude residuals (Figure 11 on page 48). calc_mags() stores the residu-

als in the magres members of the Stamag structures. If any outlying residuals are

found, they may be optionally screened all at once and new network-magnitude

data may be estimated. The outlying station-magnitude data are screened from

further network magnitude calculations by changing their state to magnitude-non-

defining, and the magdef members of Stamag are set to n. This optional screening

process repeats until all outliers have been removed. The result is a final network

magnitude and uncertainty. Former outliers cannot be restored. Station magni-

tudes whose associated manual_override flags (in the SM_Aux structures) are

set to TRUE are exempt from this outlier screening process.

In general, calc_mags() copies the final network magnitudes and uncertainties

into the magnitude and uncertainty members of the Netmag structures

(Table 2 on page 14; [IDC5.1.1Rev2]) nested within the Magnitude objects. The

final network magnitudes and uncertainties are identical to the initial network

magnitudes and uncertainties if outlier screening was not performed. If MLE-mag-

nitude data were estimated via bootstrap resampling, then only the bootstrapped

uncertainties are stored in the uncertainty members of the Netmag structure.

The remaining members of Netmag are populated with MLE-magnitude data esti-

mated without bootstrap resampling. The final network magnitudes and uncer-

tainties are not stored in Netmag when no magnitude-defining station magnitudes

remain after the outlier screening process. In this case, N/A values for the final

magnitude and uncertainty are stored in Netmag. calc_mags() also updates the

net, orid, and nsta members of Netmag.

calc_mags() stores the station- and network-magnitude data in two memory

stores. As mentioned, the station- and network-magnitude data are stored in the

Stamag and Netmag members of the Magnitude objects within the magnitude-

data memory store (M2 in Figure 10 and Figure 11; Table 11 on page 45). In addi-

tion, if the calling application optionally wants to retain the network magnitudes in

an output origin database table, then the network magnitudes themselves are also

stored in Origin structures within the station, event, and control-parameter data
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
memory store (M6 in Figure 10 and Figure 11; Table 10 on page 44). calc_

mags() may update the mb, mbid, ms, msid, ml, and mlid members of the

Origin structure (Table 49 on page 121).

calc_mags() returns the output variables listed in Table 37 to the calling applica-

tion.

I n te r f aces

All external applications that operate in network-magnitude mode must call

libmagnitude through calc_mags(), as indicated in Figure 10. EvLoc and ARS call

calc_mags(). calc_mags() should be called once for each origin processed,

although many magtypes may be processed per event. Applications that operate in

station-magnitude mode do not need to call calc_mags().

calc_mags() calls the lower-level libmagnitude processing units listed in Table 21

on page 68.

Er ro r S ta tes

calc_mags() is an external interface and is designed to be called directly by an

external application. The application is responsible for ensuring that the input

arguments (Table 36 on page 98) contain valid data.

TABLE 37: OUTPUT VARIABLES FROM CALC_MAGS()

Type Variable Name Use Description

int num_mags R number of network magnitudes stored in
Netmag database table structure member
of Magnitude object

Magnitude * magn_ptr A pointer to updated Magnitude object

Origin * origin A pointer to updated Origin database
table structure
101

t w a r e

e r 2 0 0 1

102

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
network_mag(), mag_boot_strap(), mag_max_lik(), and only_bound_

amps() return an integer status code to a higher-level interface (see Table 21 on

page 68 for hierarchy). The higher-level interfaces interpret the status code and

determine whether or not to continue processing. Table 38 describes these status

codes, which are associated with computing a network magnitude and uncertainty.

The Status Type column is either “OK” or “Warning.” The software within the

Estimate Network-magnitude Data process handles potentially erroneous conditions

without needing to terminate the process. An OK status type indicates to the

higher-level interface that it should continue its processing because processing in

the lower-level function was successful. A warning status type indicates to the

higher-level interface that the network magnitude estimated in the lower-level

interface was not reliable. The Status Message Description column in Table 21

describes the message associated with the status code. These strings are not writ-

ten to stderr, but a similar message may be written by the processing unit that

encounters the warning condition. The Source Processing Unit(s) column lists the

processing unit(s) that may encounter a condition producing the status code.

TABLE 38: ESTIMATE NETWORK-MAGNITUDE DATA PROCESS STATUS CODES

Status
Code

Status
Type Status Message Description

Source Processing
Unit(s)

0 OK successful magnitude and uncertainty cal-
culations completed

network_mag(),
mag_boot_strap(),
mag_max_lik(),
only_bound_amps()

Ð1 Warning no station-magnitude data available network_mag()

Ð2 Warning maximum number of allowable iterations
exceeded

mag_max_lik(),
only_bound_amps()

Ð3 Warning maximum number of allowable iterations
exceeded while trying to estimate upper-
bound magnitude and uncertainty

network_mag()

Ð4 Warning maximum number of allowable iterations
exceeded while trying to estimate lower-
bound magnitude and uncertainty

network_mag()
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
calc_mags() interprets the station_magnitude() return value (see Table 21

on page 68). Acceptable return values indicate to calc_mags() that processing

was successful. An N/A value returned from station_magnitude() indicates to

calc_mags() that a station magnitude could not be estimated. calc_mags()

makes that station magnitude nondefining and continues its processing.

calc_mags() also optionally writes station- and network-magnitude data to std-

out.

network_mag ()

network_mag() is a function that estimates a network-average magnitude and

uncertainty for a single magtype from defining station-magnitude data. network_

mag() also calls other libmagnitude functions to estimate MLE and upper- or

lower-bound magnitudes and standard deviations.

I nput /P rocess ing /Output

network_mag() is a function that is called by calc_mags() as part of the Esti-

mate Network-magnitude Data process. See Figure 10 on page 43 for the relation-

ship of this process to applications and other libmagnitude processes. See Figure 11

on page 48 and Table 21 on page 68 for the relationship between this function

and other libmagnitude functions within the Estimate Network-magnitude Data pro-

cess.

1 OK only origin-based amplitudes available network_mag()

2 OK only clipped amplitudes available network_mag()

TABLE 38: ESTIMATE NETWORK-MAGNITUDE DATA PROCESS STATUS CODES

Status
Code

Status
Type Status Message Description

Source Processing
Unit(s)
103

t w a r e

e r 2 0 0 1

104

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 39 describes the input variables to network_mag(). The data source for the

verbose variable is the station, event, and control-parameter data memory store

(M6 in Figure 11; Table 10 on page 44). The data source for the three remaining

variables is the magnitude-data memory store (M2 in Figure 11; Table 11 on

page 45).

network_mag() estimates a weighted or unweighted network-average magni-

tude and uncertainty. The inputs to the network-average magnitude estimates are

a magtype, magnitude-defining station magnitudes, and uncertainties computed

from arrival-based amplitudes. network_mag() also calls other libmagnitude

functions to estimate a weighted or unweighted MLE, upper-bound magnitude,

lower-bound magnitude, and associated standard deviations. The input array of

SM_Sub structures (Table 59 on page 138) contains the station magnitudes, uncer-

tainties, magnitude-defining states, and signal types associated with the magtype

and event. Weighted network-average magnitude data are determined using the

station-magnitude uncertainties as weights.

network_mag() estimates a single weighted or unweighted network-average

magnitude using only magnitude-defining station-magnitude data estimated from

arrival-based amplitudes. network_mag() constrains the uncertainty (standard

deviation) of the network average to be within the lower- and upper-standard

deviation bounds defined in the MDF, if these two bounds are not identical. These

bounds are contained in the sglim1 and sglim2 members of the Mag_Cntrl

structure, respectively (see Table 55 on page 134). If the standard deviation is out

TABLE 39: INPUT VARIABLES TO NETWORK_MAG()

Type
Variable
Name Use Description

SM_Sub * sm_sub A array of SM_Sub structures

Mag_Cntrl * mcntrl A pointer to Mag_Cntrl structure

int sm_count A number of elements in array of SM_Sub structures

int verbose A level of verbosity for printed magnitude output
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
of the allowed range, then it is reset to the value of the nearest boundary. The

standard deviation of the network average is not constrained if the lower- and

upper-standard deviation bounds are identical.

If only one magnitude-defining station magnitude is available, then network_

mag() equates the network-average magnitude with the station magnitude and

defines the standard deviation of the network average to be the standard deviation

baseline value for the magtype being processed. The baseline value is defined in

the MDF and stored in the sgbase member of the Mag_Cntrl structure.

network_mag() also calls mag_max_lik() and only_bound_amps() to esti-

mate a single weighted or unweighted MLE and an upper- or lower-bound magni-

tude and standard deviation, respectively. Only magnitude-defining station

magnitudes estimated from a combination of arrival-based, origin-based, and

clipped amplitudes are used to estimate a MLE magnitude and standard deviation.

Only magnitude-defining station magnitudes estimated from origin-based ampli-

tudes are used to estimate an upper-bound magnitude and standard deviation.

Only magnitude-defining station magnitudes estimated from clipped amplitudes

are used to estimate a lower-bound magnitude and standard deviation. Clipped

amplitude data are seldom encountered in routine IDC processing.

network_mag() estimates an MLE and an upper- or lower-bound trial magnitude

and standard deviation using a set of magnitude-defining station-magnitude data.

These trial values are passed to mag_max_lik() and only_bound_amps(). The

magnitude and standard deviation estimates computed by mag_max_lik() and

only_bound_amps() are returned to network_mag().

network_mag() returns the output variables listed in Table 40 to calc_mags().

The mag, sigma, and sdav arguments contain the magnitude and uncertainty esti-

mates associated with the magnitude type that was computed.

TABLE 40: OUTPUT VARIABLES FROM NETWORK_MAG()

Name Type Use Description

icode int R status code

mag double * A network magnitude
105

t w a r e

e r 2 0 0 1

106

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

Only calc_mags() calls network_mag() (see Table 21 on page 68 for hierar-

chy). network_mag() calls the lower-level libmagnitude processing units mag_

max_lik() and only_bound_amps().

Er ro r S ta tes

network_mag() is a function designed not to be called directly by an external

application. As a result, the input arguments in Table 39 are not checked within

network_mag() to ensure valid content.

network_mag() interprets the status code returned from only_bound_amps()

(see Table 21 for hierarchy and Table 38 on page 102 for the status code descrip-

tions). An OK status code indicates to network_mag() that processing was suc-

cessful. A warning status code indicates to network_mag() that it should

terminate all further processing and return a warning code to calc_mags().

network_mag() returns a Ð3 or Ð4 warning code depending on whether an

upper- or lower-magnitude bound is estimated.

network_mag() does not interpret the status code returned from mag_max_

lik(). network_mag() continues its processing regardless of the status code

returned by mag_max_lik(). This is acceptable even if mag_max_lik() encoun-

tered a warning condition and returned a warning status code to network_

mag(), because the magnitude and standard deviation returned from mag_max_

lik() are the best MLE estimates available.

sigma double * A network-magnitude standard deviation

sdav double * A network-magnitude uncertainty

num_amps_used int * A number of magnitude-defining station
magnitudes used to estimate network-mag-
nitude data

TABLE 40: OUTPUT VARIABLES FROM NETWORK_MAG() (CONTINUED)

Name Type Use Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
network_mag() ensures that the network-average standard deviation is con-

strained within sglim1 and sglim2 as long as these two bounds are not identical.

If the standard deviation of the network average is outside of the allowable range,

then network_mag() resets the standard deviation to be the value of the nearest

bound (either sglim1 or sglim2), writes a warning message to stdout, and con-

tinues its processing. The warning message is of the form:

Warning: Network stdev = STDEV < lower bound in mdf file = SGLIM1 ->

Setting network sigma = SGLIM1

or

Warning: Network stdev = STDEV > upper bound in mdf file = SGLIM2 ->

Setting network sigma = SGLIM2

depending on whether or not the standard deviation is less than sglim1 or greater

than sglim2. STDEV is the standard deviation of the network average, and SGLIM1

and SGLIM2 are the initial lower- and upper-bound standard deviations, respec-

tively.

mag_boot_ s t rap ()

mag_boot_strap() is a function that uses the bootstrap method to estimate an

MLE magnitude, standard deviation, and uncertainty for a single magtype from

magnitude-defining station-magnitude data.

I nput /P rocess ing /Output

mag_boot_strap() is a function that is called by calc_mags() as part of the

Estimate Network-magnitude Data process. See Figure 10 on page 43 for the rela-

tionship of this process to applications and other libmagnitude processes. See

Figure 11 on page 48 and Table 21 on page 68 for the relationship between this

function and other libmagnitude functions within the Estimate Network-magnitude

Data process.
107

t w a r e

e r 2 0 0 1

108

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Table 41 describes the input variables to mag_boot_strap(). The data source for

the num_boots and verbose variables is the station, event, and control-parameter

data memory store (M6 in Figure 11; Table 10 on page 44). The data source for

the sm_sub, mcntrl, and sm_count variables is the magnitude-data memory store

(M2 in Figure 11; Table 11 on page 45). calc_mags() stores values in the

remaining variables prior to calling mag_boot_strap().

mag_boot_strap() uses the bootstrap method [McL88] to estimate a weighted

or unweighted MLE magnitude, standard deviation, and two uncertainties for a

single magtype. This bootstrap procedure begins by randomly resampling (with

repetition) the input magnitude-defining station-magnitude data stored in the

input array of SM_Sub structures (Table 59 on page 138). At least one of the

resampled defining station-magnitude data elements must have been estimated

from an arrival-based amplitude, but the remainder may be any combination of

station-magnitude data estimated from arrival-based, origin-based, and clipped

amplitudes. Weighted MLE-magnitude data are determined using the station-

magnitude uncertainties as weights.

TABLE 41: INPUT VARIABLES TO MAG_BOOT_STRAP()

Type Name Use Description

SM_Sub * sm_sub A array of SM_Sub structures

Mag_Cntrl * mcntrl A pointer to Mag_Cntrl structure

int sm_count A number of elements in array of SM_Sub
structures

int num_boots A maximum number of bootstrap resam-
ples permitted

double net_mag A trial network-average magnitude

double sigma A trial network-average standard deviation

int verbose A level of verbosity for printed magnitude
output
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
mag_boot_strap() passes the resampled station-magnitude data to mag_max_

lik(), along with the trial magnitude and standard deviation stored in the input

variables net_mag and sigma and the pointer to the Mag_Cntrl structure. mag_

max_lik() estimates and returns an MLE magnitude and standard deviation for

this station-magnitude data set.

mag_boot_strap() repeats the above steps at least 10 times. After each MLE

magnitude and standard deviation is returned from mag_max_lik(), mag_boot_

strap() adds them to distributions of previously determined magnitudes and

standard deviations and computes an average and standard deviation of each dis-

tribution. The uncertainties in the magnitude and standard deviation are defined to

be the standard deviations of each distribution. This resampling, distributing, and

estimating process continues until the convergence criteria are met or until the

maximum number of bootstrap resamples (stored in the num_boots input variable)

is reached.

mag_boot_strap() returns the output variables listed in Table 42 to calc_

mags(). The fmag1 and sig1 arguments contain the averages of the magnitude

and standard deviation distributions, respectively. The sigmu and sigsig arguments

contain the uncertainties in the magnitude and standard deviation distributions,

respectively.

TABLE 42: OUTPUT VARIABLES FROM MAG_BOOT_STRAP()

Type Name Use Description

int icode R status code

double * fmag1 A bootstrapped MLE magnitude

double * sigmu A uncertainty in bootstrapped MLE magnitude

double * sig1 A bootstrapped MLE standard deviation

double * sigsig A uncertainty in bootstrapped MLE standard deviation
109

t w a r e

e r 2 0 0 1

110

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I n te r f aces

Only calc_mags() calls mag_boot_strap() (see Table 21 on page 68 for hier-

archy). mag_boot_strap() only calls the lower-level libmagnitude processing

unit mag_max_lik().

Er ro r S ta tes

mag_boot_strap() is a function designed not to be called directly by an external

application. As a result, the input arguments in Table 41 are not checked within

mag_boot_strap() to ensure valid content.

mag_boot_strap() does not interpret the status code returned from mag_max_

lik(). mag_boot_strap() continues its processing regardless of the status code

returned by mag_max_lik(). This is acceptable even if mag_max_lik() encoun-

tered a warning condition and returned a warning status code to network_mag()

because the magnitude and standard deviation returned from mag_max_lik()

are the best MLE estimates available.

mag_boot_strap() optionally writes bootstrapped MLE network-magnitude

data to stdout.

mag_max_ l i k ()

mag_max_lik() is a function that estimates an MLE magnitude and standard

deviation for a single magtype given magnitude-defining station-magnitude data.

I nput /P rocess ing /Output

mag_max_lik() is a function that is called by network_mag() and mag_boot_

strap() as part of the Estimate Network-magnitude Data process. See Figure 10

on page 43 for the relationship of this process to applications and other

libmagnitude processes. See Figure 11 on page 48 and Table 21 on page 68 for the

relationship between this function and other libmagnitude functions within the

Estimate Network-magnitude Data process.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Table 43 describes the input variables to mag_max_lik(). The data source for the

verbose variable is the station, event, and control-parameter data memory store

(M6 in Figure 11; Table 10 on page 44). The data source for the sm_sub, mcntrl,

and sm_count variables is the magnitude-data memory store (M2 in Figure 11;

Table 11 on page 45). The calling interfaces store values in the remaining variables

prior to calling mag_max_lik().

mag_max_lik() uses an iterative Expectation-Maximization (EM) algorithm

[Bla82] to estimate a weighted or unweighted MLE magnitude and standard devi-

ation for each specified magtype from magnitude-defining station magnitudes and

uncertainties. At least one of the defining station magnitudes must have been esti-

mated from an arrival-based amplitude, but the remainder may be any combina-

tion of station-magnitude data estimated from arrival-based, origin-based, and

clipped amplitudes. The station-magnitude data are retrieved from the input array

of SM_Sub structures (Table 59 on page 138). Weighted MLE-magnitude data are

determined using the station-magnitude uncertainties as weights.

TABLE 43: INPUT VARIABLES TO MAG_MAX_LIK()

Type Name Use Description

SM_Sub * sm_sub A array of SM_Sub structures

Mag_Cntrl * mcntrl A pointer to Mag_Cntrl structure

int sm_count A number of elements in array of SM_Sub
structures

double ave A trial network-average magnitude

double * net_mag A trial network-average magnitude

double * sigma A trial network-average standard deviation

int verbose A level of verbosity for printed magnitude
output
111

t w a r e

e r 2 0 0 1

112

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
The first iteration of the EM algorithm uses trial values for the initial MLE magni-

tude and standard deviation. The input variables ave and net_mag contain the ini-

tial trial network-average magnitudes. If ave and net_mag differ by more than one

magnitude unit, then ave is used as the initial trial magnitude. Otherwise, net_mag

is used. The input variable sigma contains the initial trial standard deviation.

At the completion of each iteration, mag_max_lik() constrains the MLE standard

deviation of the MLE to be within the lower- and upper-standard deviation bounds

defined for the magtype. These bounds are contained in the sglim1 and sglim2

members of the Mag_Cntrl structure, respectively (see Table 55 on page 134). If

the standard deviation is out of the allowed range, then it is reset to the value of

the nearest boundary. The iterations of the EM algorithm continue until conver-

gence criteria are met or until the number of iterations exceeds 200.

If only one magnitude-defining station magnitude is available, then mag_max_

lik() equates the MLE magnitude with the station magnitude and defines the

MLE standard deviation to be the standard deviation baseline value for the mag-

type being processed. The baseline value is stored in the sgbase member of the

Mag_Cntrl structure.

MLE-magnitude data may be estimated if the station-magnitude data are all esti-

mated from arrival-based amplitudes. In this case, the MLE magnitude and stan-

dard deviation estimated by mag_max_lik() are identical to those estimated for

the network average.

One important characteristic of an MLE is that it does not generally increase the

precision of the network-magnitude estimate and may actually increase the uncer-

tainty due to the introduction of origin-based and clipped amplitudes. However,

the MLE does reduce systematic biases due to the origin-based and clipped mea-

surements [McL88].

mag_max_lik() returns the output variables listed in Table 44 to the calling inter-

face. net_mag and sigma are also input variables, but mag_max_lik() overwrites

their input values with the MLE magnitude and standard deviation estimates.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
I n te r f aces

Only network_mag() and mag_boot_strap() call mag_max_lik() (see

Table 21 on page 68 for hierarchy). mag_max_lik() does not call any lower-level

libmagnitude processing units.

Er ro r S ta tes

mag_max_lik() is a function designed not to be called directly by an external

application. As a result, the input arguments are not checked within mag_max_

lik() to ensure valid content.

mag_max_lik() checks that the number of iterations in the EM algorithm is less

than 200. If more than 200 iterations occur before the convergence criteria is satis-

fied, then mag_max_lik() writes a warning message to stderr and returns a

warning status code of -2 along with the last estimate of the MLE magnitude and

standard deviation to the calling interface (see Table 38 on page 102 for status

code descriptions). The warning message is:

EM ESTIMATOR HAS NOT CONVERGED AFTER 200 ITERATIONS!

on ly_bound_amps ()

only_bound_amps() is a function that estimates an upper- or lower-bound mag-

nitude and standard deviation for a single magtype from magnitude-defining sta-

tion-magnitude data.

TABLE 44: OUTPUT VARIABLES FROM MAG_MAX_LIK()

Type Variable Name Use Description

int icode R status code

double * net_mag A MLE magnitude

double * sigma A MLE standard deviation
113

t w a r e

e r 2 0 0 1

114

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
I nput /P rocess ing /Output

only_bound_amps() is a function that is called by network_mag() as part of

the Estimate Network-magnitude Data process. See Figure 10 on page 43 for the

relationship of this process to applications and other libmagnitude processes. See

Figure 11 on page 48 and Table 21 on page 68 for the relationship between this

function and other libmagnitude functions within the Estimate Network-magnitude

Data process.

Table 45 describes the input variables to only_bound_amps(). The data source

for the sm_sub, mcntrl, and sub_count variables is the magnitude-data memory

store (M3 in Figure 11; Table 11 on page 45). network_mag() stores values in

the remaining variables prior to calling only_bound_amps().

only_bound_amps() uses an interactive hypothesis test algorithm to estimate a

weighted or unweighted upper- or lower-bound magnitude and standard devia-

tion for a given magtype from magnitude-defining station magnitudes and uncer-

tainties. The magnitude-defining station-magnitude data must be origin-based if

an upper-bound magnitude is being estimated. The station-magnitude data must

be clipped amplitudes if a lower-bound magnitude is being estimated. The station-

TABLE 45: INPUT VARIABLES TO ONLY_BOUND_AMPS()

Type Name Use Description

SM_Sub * sm_sub A array of SM_Sub structures

Mag_Cntrl * mcntrl A pointer to Mag_Cntrl structure

int sub_count A number of elements in array of SM_Sub
structures

double ave A trial network-average magnitude

int isign A indicates whether to estimate upper- or
lower-magnitude bounds:
Ð1 = upper bound, 1 = lower bound

double sigma A trial network-average standard deviation
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
magnitude data are retrieved from the input array of SM_Sub structures (Table 59

on page 138). Weighted upper- and lower-bound magnitude data are determined

using the station-magnitude uncertainties as weights.

The hypothesis test algorithm initializes a standard deviation and performs a grid

search over a set of trial magnitudes, beginning with a trial magnitude just below

or above the trial value stored in the ave variable (depending on the value of the

isign input variable). The standard deviation is set to the value of the sglim2

member in the Mag_Cntrl structure. An initial trial standard deviation, stored in

the sigma input variable, is presently not used in the algorithm.

For each trial magnitude, only_bound_amps() computes the probability that all

input station magnitudes could not be generated from an event with that particu-

lar trial magnitude and standard deviation. The magnitude that rejects this hypoth-

esis at the 95 percent confidence level is chosen as the upper- or lower-bound

magnitude estimate.

only_bound_amps() returns the output variables listed in Table 46 to network_

mag(). The net_mag and sigmax arguments contain the upper- or lower-bound

magnitude estimate and fixed standard deviation, respectively.

I n te r f aces

Only network_mag() calls only_bound_amps() (see Table 21 on page 68 for

hierarchy). only_bound_amps() does not call any other lower-level libmagnitude

processing units.

TABLE 46: OUTPUT VARIABLES FROM ONLY_BOUND_AMPS()

Type Name Use Description

int icode R status code

double * net_mag A upper- or lower-bound magnitude

double * sigmax A upper- or lower-bound standard deviation
115

t w a r e

e r 2 0 0 1

116

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Er ro r S ta tes

only_bound_amps() is a function designed not to be called directly by an exter-

nal application. As a result, the input arguments are not checked within only_

bound_amps() to ensure valid content.

only_bound_amps() checks that the number of hypotheses tested is less than

200. If 200 or more iterations are needed to reject the test hypothesis, then only_

bound_amps() returns a warning status code of Ð2 along with the last estimate of

the upper- or lower-bound magnitude and standard deviation to the calling inter-

face (see Table 38 for status code descriptions).

PR IMARY L IBMAGNITUDE
FUNCT IONAL AREAS

The libmagnitude processing units address two broad functional areas: (1) Station

Magnitude Estimation and (2) Network Magnitude Estimation. The 23 Station

Magnitude Estimation processing units are defined in 6 libmagnitude files. The 27

Network Magnitude Estimation processing units are defined 10 libmagnitude files.

Two of the processing units, get_delta_for_sta() and get_TL_indexes(),

address both functional areas. Two of the files, TL_manipulation.c and mag_

access.c, define processing units of both functional areas. Altogether, 48 distinct

libmagnitude processing units are defined in 14 distinct source-code files.

Sta t ion Magn i tude Es t imat ion

Table 47 lists the processing units and source-code files associated with the Station

Magnitude Estimation functional area. The File Description column summarizes the

functional scope of the source-code file. Some of the files contain only a single

processing unit. Other files contain multiple processing units that are grouped

together in the file based on commonly shared memory store components. For

example, the eight processing units in TL_manipulation.c associated with esti-

mating station-magnitude data all share components from the internal earth-

model-data memory store (M1 in Figure 8 on page 37; Table 8 on page 38) that

should not be under the control of external applications. All memory-store compo-
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
nents associated with the processing units in Table 47 are stored in M1 or the

external station-magnitude-data memory store (M7 in Figure 8; Table 9 on

page 40). This table includes only the processing units that are accessed in both

station- and network-magnitude modes, that is, those that compose the Read

Earth-model Data process and Estimate Station-magnitude Data process (2.1 and 2.3

in Figure 10 on page 43).

TABLE 47: STATION MAGNITUDE ESTIMATION SOURCE-
CODE FILES

Source-code File Processing Units File Description

mag_access.c setup_mag_facilities(),
setup_mc_tables(),
station_magnitude(),
initialize_sm_info(),
get_mag_indexes(),
get_meas_error(),
abbrev_sta_mag(),
reset_max_dist(),
reset_min_dist(),
revert_max_dist(),
revert_min_dist()

provides core station-magni-
tude data handling facilities;
setup_mag_facilities() and
setup_mc_tables() call other
processing units to read and
store data from MDF, TLSF, and
TLMs; the remaining processing
units handle computation of sta-
tion-magnitude data

mag_error_msg.c mag_error_msg() links magnitude status code
with status message string

read_mdf.c read_mdf() reads and stores data from sin-
gle MDF in data structures
defined in include file
mag_descrip.h
117

t w a r e

e r 2 0 0 1

118

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Network Magn i tude Es t imat ion

Table 48 lists the processing units and source-code files associated with the Net-

work Magnitude Estimation functional area. As with the Station Magnitude Esti-

mation functional area, some of the files listed in Table 48 contain only a single

processing unit. Other files contain multiple processing units that are grouped

together in the file based on commonly shared memory-store components. All

components associated with the processing units in Table 48 are stored in the

earth-model-data memory store or the external magnitude-data memory store

(M2; Table 11 on page 45). This table includes only the processing units that are

accessed in network-magnitude mode but not station-magnitude mode, that is,

those that compose the Build Magnitude Data Store process and Estimate Network-

magnitude Data process (2.2 and 2.4, respectively, in Figure 10 on page 43).

TL_manipulation.c set_sta_TL_pt(),
read_tlsf(),
free_tl_table(),
get_delta_for_sta(),
interp_for_tl_value(),
get_TL_ts_corr(),
get_tl_model_error(),
get_TL_indexes()

provides core transmission-loss
data handling facilities.
read_tlsf() reads and stores
data from single TLSF in data
structures defined in include file
tl_table.h; the remaining pro-
cessing units handle retrieval of
transmission-loss data (magni-
tude correction data) from M1
in Figure 8 and Figure 10

TL_error_msg.c TL_error_msg() lInks transmission-loss status
code with status message string

read_tl_table.c read_tl_table() reads and stores data from
single TLM in data structures
defined in include file
tl_table.h

TABLE 47: STATION MAGNITUDE ESTIMATION SOURCE-
CODE FILES (CONTINUED)

Source-code File Processing Units File Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TABLE 48: NETWORK MAGNITUDE ESTIMATION SOURCE-
CODE FILES

Source Code File Processing Units File Description

build_mag_obj.c build_mag_obj() stores event and magnitude
specification data in Magni-
tude objects (Table 54 on
page 133); this data structure is
defined in include file mag_
descrip.h

mag_utils.c copy_magnitudes(),
free_magnitudes()

provides processing units for
copying and freeing memory
allocated to Magnitude objects
(Table 54)

mag_access.c get_magtype_features(),
reset_algorithm(),
reset_amptypes(),
reset_sd_baseline(),
reset_sd_limits(),
reset_wgt_ave_flag(),
revert_algorithm(),
revert_amptypes(),
revert_sd_baseline(),
revert_sd_limits(),
revert_wgt_ave_flag()

provides processing units for
initializing and modifying mem-
bers of Mag_Descrip and
Mag_Cntrl structures (Table 55
on page 134); this data struc-
ture is defined in include file
mag_descrip.h

TL_manipulation.c valid_phase_
for_TLtype(),
valid_range_
for_TLtable(),
get_delta_for_sta(),
get_TLMD_index(),
get_TL_indexes()

provides processing units for
identifying which event data to
store in Magnitude objects
(Table 54)

mag_params.c initialize_mag_params() initializes Mag_Params struc-
ture (Table 51 on page 129) to
default values; this data struc-
ture is defined in include file
mag_params.h
119

t w a r e

e r 2 0 0 1

120

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
DATA DESCR IPT ION

EvLoc reads station and event data from an input database account and writes

magnitude results to an output database account. It interacts with the database

through calls to GDI functions.

calc_mags.c calc_mags(),1

mag_set_compute_
upper_bounds(),
mag_get_compute_
upper_bounds()

provides several network-mag-
nitude interfaces and process-
ing units; calc_mags() is the
primary interface and function
for estimating and storing sta-
tion- and network-magnitude
data in network-magnitude
mode; the other processing
units determine whether upper-
bound magnitudes should be
estimated and stored

network_mag.c network_mag() estimates single network-aver-
age magnitude, standard devia-
tion, and uncertainty

mag_boot_strap.c mag_boot_strap() estimates single MLE magni-
tude, standard deviation, and
two uncertainties using boot-
strap resampling

mag_max_lik.c mag_max_lik() estimates single MLE magni-
tude and standard deviation

only_bound_amps.c only_bound_amps() estimates single upper- or
lower-bound magnitude and
standard deviation

1. A small portion of this processing unit is used to determine station-magnitude data.

TABLE 48: NETWORK MAGNITUDE ESTIMATION SOURCE-
CODE FILES (CONTINUED)

Source Code File Processing Units File Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Database Des i gn

EvLoc uses a database for recording station- and network-magnitude results. The

entity-relationship model of the schema used to estimate event magnitudes is indi-

cated in Figure 12 on page 124.

Database Schema

Table 49 summarizes the usage of database tables by EvLoc. The first two columns

identify the table and whether it is read or written, and the third column shows the

purpose for reading or writing each attribute. Only those attributes that are

required to obtain station- and network-magnitude estimates are included in this

table. The relationships between the database tables themselves are shown in

Figure 12.

TABLE 49: EVLOC DATABASE USAGE FOR MAGNITUDE
ESTIMATION

Table Action Usage

affiliation reads • net for record identification

• sta for linking net to site records

site reads • sta for record identification and linking stations with sta-
tion-specific TLM description data stored in TLSF

• ondate and offdate for record identification

• lat and lon for determining event-to-station distance

origin reads • orid, evid, and jdate for record identification

• lat and lon for determining event-to-station distance and
retrieving magnitude correction from TLM

• depth for identifying usable TLM and retrieving magni-
tude correction from TLM

assoc reads • arid and orid for record identification

• sta, phase, and delta for identifying TLM to be used with
arrival-based amplitude

• timedef for optionally restricting which station magnitude
may be magnitude-defining
121

t w a r e

e r 2 0 0 1

122

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
parrival reads • parid and evid for record identification

• sta and phase for identifying TLM to be used with origin-
based amplitude

amplitude reads • ampid, arid, parid, and amptype for record identification

• chan for identifying usable TLM

• amp, per, and duration for computing station magnitude

• clip for flagging clipped amplitude

stamag reads • ampid, arid, orid, and magtype for record identification

• sta for determining event-station distance, identifying
usable TLM, and identifying substation magnitudes

• phase for identifying usable TLM

• magdef for identifying defining or nondefining state of
station magnitude

• auth for optionally using pre-existing magdef state of sta-
tion magnitude

netmag reads • orid and magtype for record identification

event_control reads • orid for record identification

• mag_sdv_screen and mag_sdv_mult for requesting resid-
ual outlier screening

• mag_alpha_only for using only a primary set of stations in
computing magnitudes

• mb_min_dist and mb_max_dist for defining minimum
and maximum distance range for valid mb amplitude data

origin writes • mbid, msid, and mlid for record identification

• mb, ms, and ml for recording network magnitudes

• auth for recording application and user

• lddate for recording creation date of new origin record

TABLE 49: EVLOC DATABASE USAGE FOR MAGNITUDE
ESTIMATION (CONTINUED)

Table Action Usage
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
stamag writes • magid, ampid, arid, orid, evid for record identification;
magid may be new

• sta and phase for preserving station/phase pair

• delta for recording event-to-station distance

• magtype for recording magnitude type

• magnitude and uncertainty for recording station magni-
tude and uncertainty

• magres for recording final magnitude residual

• magdef for recording whether or not the station magni-
tude was used to estimate network magnitude

• mmodel for recording magnitude model designation

• auth for recording application and user

• lddate for recording creation data of new stamag record

netmag writes • magid, orid, and evid for record identification; magid may
be new

• net for recording network used to estimate network-mag-
nitude data

• magtype for recording magnitude type

• nsta for recording number of magnitude-defining station
magnitudes used to estimate network-magnitude data

• magnitude and uncertainty for recording network magni-
tude and uncertainty

• auth for recording application and user

• lddate for recording creation data of new netmag record

event_control writes • orid and evid for record identification

• mag_sdv_screen and mag_sdv_mult for indicating if resid-
ual outlier screening was applied

• mag_alpha_only for indicating if only a primary set of sta-
tions was used to estimate magnitudes

• mb_min_dist and mb_max_dist for recording minimum
and maximum distance range used to limit mb amplitude
data

TABLE 49: EVLOC DATABASE USAGE FOR MAGNITUDE
ESTIMATION (CONTINUED)

Table Action Usage
123

t w a r e

e r 2 0 0 1

124

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
FIGURE 12. EVENT MAGNITUDE DATABASE TABLE RELATIONSHIPS

EvLoc Data S t ruc tu res

EvLoc uses C data structures for storing station and event data and control param-

eters in internal memory. The following paragraphs describe the EvLoc data

structures that are needed for magnitude processing.

parrival

parid
sta

time
orid
evid

netmag

magid
evid
net

orid

stamag

magid
ampid

sta
arid
orid
evid

amplitude

ampid
arid

parid
amptype

assoc

arid
orid

origin

orid
lat

lon
depth

time
evid

mbid
msid
mlid

orid

magid

ampidparid

magid-mbid | msid | mlid

site

sta
ondate

affiliation

net
sta

stasta

event_control

evid
orid

orid

orid
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
EvLoc_Pa r

The EvLoc_Par structure contains general control-parameter settings. These set-

tings are valid for a single EvLoc execution. They may be a combination of default

settings and user-specific settings listed in an input parameter file. The general

control parameters are specified by read_evloc_par(). This structure is a com-

ponent of the control-parameter-data memory store (M3 in Figure 7 on page 32;

Table 5 on page 33). Refer to the EvLoc man page for descriptions and default val-

ues of the general control parameters. The “M” column in Table 50 indicates

whether or not the EvLoc_Par structure member is magnitude-related.

TABLE 50: EVLOC_PAR STRUCTURE

Type Name Description M

Bool triple_location estimate event location and magnitude
at three depths (free depth, surface,
restrained depth)? 0 = no, 1 = yes

yes

int mode estimate event locations/magnitudes?
0 = event locations only,
1 = magnitudes only,
2 = both event locations and magni-
tudes

yes

int max_gdi_records maximum number of records read from
or written to database

yes

Bool write_to_input_db_
tables

write output magnitude data to input
database tables? 0 = no, 1 = yes

yes

char * input_db_account input database account yes

char * output_db_account output database account yes

char * db_vendor database vendor yes

char * net unique network identifier yes

char * affiliation_table name of input affiliation table yes

char * aoi_file1 area-of-interest file pathname no

char * site_table name of input site table yes

char * origin_table name of input origin table yes
125

t w a r e

e r 2 0 0 1

126

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
char * arrival_table name of input arrival table no

Bool use_prev_magdefs use magnitude-defining states of input
(pre-existing) station-magnitude data?
0 = no, 1 = yes

yes

char * det_amplitude_table name of input amplitude table contain-
ing arrival-based amplitude data

yes

char * ev_amplitude_table name of input amplitude table contain-
ing origin-based amplitude data

yes

char * parrival_table name of input parrival table yes

char * netmag_table name of input netmag table yes

char * stamag_table name of input stamag table yes

char * assoc_table name of input assoc table yes

char * event_control_table name of input event_control table yes

char * origerr_table name of input origerr table no

char * new_origin_table name of output origin table yes

char * new_origerr_table name of output origerr table no

char * new_assoc_table name of output assoc table no

char * new_netmag_table name of output netmag table yes

char * new_stamag_table name of output stamag table yes

char * origin_query database query used to retrieve data
from input origin table

yes

Bool use_ev_cntrl_table override magnitude control parameters
with data from input event_control
table? 0 = no, 1 = yes

yes

Bool write_ev_cntrl_table write magnitude control parameters to
output event_control table?
0 = no, 1 = yes

yes

Bool write_ar_info_table write association-based measurements
to output ar_info table? 0 = no, 1 = yes

no

TABLE 50: EVLOC_PAR STRUCTURE (CONTINUED)

Type Name Description M
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
char * ar_info_table name of output ar_info table no

Bool write_af_tables1 write database extension tables to out-
put database account? 0 = no, 1 = yes

no

char * af_origin_table1 name of output origin table yes

char * af_origerr_table1 name of output origerr table no

char * af_assoc_table1 name of output assoc table no

char * af_netmag_table1 name of output netmag table yes

char * af_stamag_table1 name of output stamag table yes

Bool create_syn_data_only create synthetic arrival data?
0 = no, 1 = yes

no

Bool add_gauss_noise_
to_syn

add Gaussian noise to synthetic travel
times, azimuths, and slowness?
0 = no, 1 = yes

no

char * new_arrival_table name of output arrival table no

char ** phases phase names used to determine event
locations

no

int num_phases2 number of phase names used to deter-
mine event locations

no

Bool sub_sta_list_only use only event data for stations listed in
sub_sta_list to estimate event loca-
tions? 0 = no, 1 = yes

no

char ** sub_sta_list stations within network used to estimate
event locations

no

int num_sub_sta_list2 number of stations within network used
to estimate event locations

no

char ** list_of_magtypes magnitude descriptors for which net-
work-magnitude data are to be esti-
mated

yes

int num_magtypes2 number of magnitude descriptors for
which network-magnitude data are to
be estimated

yes

TABLE 50: EVLOC_PAR STRUCTURE (CONTINUED)

Type Name Description M
127

t w a r e

e r 2 0 0 1

128

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Mag_Params

The Mag_Params structure contains general magnitude control parameter set-

tings. These settings are valid for a single EvLoc execution. They may be a combi-

nation of default settings and user-specific settings listed in an input parameter file.

The general magnitude control parameters are specified by read_evloc_par().

This structure is a component of the control-parameter-data memory store (M3 in

Figure 7 on page 32; Table 5) and the event-data memory store (M5 in Figure 7;

Table 7). Some members of this structure in M5 may be updated by the magnitude

control parameters read from the input event_control tables on an event-by-event

basis. Refer to the EvLoc man page for descriptions and default values of the gen-

eral magnitude control parameters.

char ** list_of_magtypes_
to_timedef_restrict

magnitude descriptors for which the
magnitude-defining state may only be
defining if the associated time-defining
state is defining

yes

int num_magtypes_to_
timedef_restrict2

number of magnitude descriptors for
which the magnitude-defining state
may only be defining if the associated
time-defining state is defining

yes

char * sasc_dir_prefix directory pathname and filename prefix
for slowness/azimuth station correction
tables

no

char * mag_descrip_file MDF pathname yes

char * tl_spec_file TLSF pathname yes

1. This member is not applicable to the IDC.

2. This member is defined during read_evloc_par() processing and does not have an associ-
ated parameter file argument.

TABLE 50: EVLOC_PAR STRUCTURE (CONTINUED)

Type Name Description M
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TABLE 51: MAG_PARAMS STRUCTURE

Type Name Description

int verbose level of verbosity for printed magnitude output

char[9] net unique network identifier

char[7] magtype_to_origin_mb mb magtype for which network-magnitude data
are written to output origin.mb and mbid fields

char[7] magtype_to_origin_ms Ms magtype for which network-magnitude data
are written to output origin.ms and msid fields

char[7] magtype_to_origin_ml ML magtype for which network-magnitude
data are written to output origin.ml and mlid
fields

char ** list_of_mb_magtypes mb magtypes for which magnitude control data
are retrieved from input event_control table

int num_mb_magtypes1 number of mb magtypes for which magnitude
control data are retrieved from input event_con-
trol table

int num_boots maximum number of bootstrap resamples per-
mitted

Bool use_only_sta_w_corr2 use only amplitude data from stations with test-
site magnitude corrections? 0 = no, 1 = yes

Bool sub_sta_list_only use only event data for stations listed in sub_
sta_list to estimate magnitude data? 0 = no,
1 = yes

char ** sub_sta_list stations within network used to estimate magni-
tude data

int num_sub_sta_list1 number of stations within network used to esti-
mate magnitude data

Bool ignore_large_res ignore station-magnitude data with large sta-
tion-magnitude residuals? 0 = no, 1 = yes

double large_res_mult station-magnitude residual multiplication scale
factor

Bool use_ts_corr2 apply test-site magnitude corrections?
0 = no, 1 = yes
129

t w a r e

e r 2 0 0 1

130

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Ev

The Ev linked list contains input event data and output event location and magni-

tude data for a single event. The input event data are read from the input database

and stored in this linked list by read_evloc_db_tables(). The output event

location and magnitude data are populated by libloc and libmagnitude processing

units, and are copied from this linked list to the output database by write_

evloc_db_tables(). This linked list is a component of the event-data memory

store (M5 in Figure 7 on page 32; Table 7 on page 34).

char[9] ts_region2 test-site magnitude region descriptor

char * outfile_name output pathname to which output magnitude
data should be written

1. This variable is defined during read_evloc_par() processing, and does not have an
associated parameter file argument.

2. This member is not applicable to the IDC.

TABLE 52: EV LINKED LIST

Type Name Description

int prefer_loc1 preferred location identifier

Bool[3] write_this_solution1 write event location and magnitude
of origin to output database tables?
0 = no, 1 = yes

Event_control * event_control pointer to (array of)2 Event_con-
trol database table structure(s)

Origin * origin pointer to (array of)2 Origin
database table structure(s)

Arrival * arrival1 pointer to array of Arrival database
table structures

TABLE 51: MAG_PARAMS STRUCTURE (CONTINUED)

Type Name Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Mag_Pt r

The Mag_Ptr structure contains event (primarily magnitude) data for a single

event. The most important structure member is the array of Magnitude objects

(Table 54). Each element of the array corresponds to a different event magtype.

The event data are stored in this structure by read_evloc_db_tables(). This

structure is a component of the event-data memory store (M5 in Figure 7 on

page 32; Table 7 on page 34).

Assoc ** assoc array of pointers to Assoc database
table structures

Ar_Info ** ar_info1 array of pointers to Ar_Info
database table structures

int num_assocs number of elements in array of
Assoc structures

Loc_ptr * loc1 pointer to (array of)2 Loc_ptr
structures

Locator_params * loc_params1 pointer to Locator_params
structure

Mag_ptr * mag pointer to (array of)2 Mag_ptr
structure(s)

Mag_Params * mag_params pointer to Mag_Params structure

Ev * next pointer to next element in Ev linked
list

1. Not used if only magnitudes are being determined. Refer to [IDC-7.1.5] for a description of
these linked list members.

2. This member is a pointer to an array of structures if more than one origin is being located
(and magnitudes determined) for the event.

TABLE 52: EV LINKED LIST (CONTINUED)

Type Name Description
131

t w a r e

e r 2 0 0 1

132

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
l i bmagn i tude Data S t ruc tu res

libmagnitude uses C data structures for storing event data, magnitude control

parameters, and earth-model data in internal memory. The following paragraphs

describe the most important libmagnitude data structures.

Magn i tude

The Magnitude object contains event and magnitude specification data for a sin-

gle event and magtype. The event data are primarily records read from an input

database and stored in database table structures by a calling application. The mag-

nitude specification data are magnitude control settings that are originally defined

in the magnitude description data section of the MDF (see Table 55), but may be

modified by the application. A Magnitude object provides a convenient way to

bind amplitude and magnitude data together by magtype and pass these data

between an application and libmagnitude processing units. build_mag_obj()

and the lower-level functions it calls store the event and magnitude specification

data in the Magnitude object. This structure is a component of the magnitude-

data memory store (M2 in Figure 10; Table 11 on page 45).

TABLE 53: MAG_PTR STRUCTURE

Type Name Description

int num_mags number of elements in array of Magnitude objects

Magnitude * magnitude array of Magnitude objects

Af_netmag * af_netmag1

1. This member is not applicable to the IDC.

array of Af_netmag database table structure

Af_stamag ** af_stamag1 array of pointers to Af_stamag database table
structures
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Mag_Desc r ip

The Mag_Descrip structure contains magnitude description data (control settings)

for a single magtype. The control settings define what event data will be used to

estimate station magnitudes, how a network magnitude will be estimated from

station magnitudes, and how the network-magnitude standard deviation may be

bounded. The magnitude description data are read from the MDF by read_

mdf(). This structure is a component of the earth-model-data memory store (M1

in Figure 8 on page 37, Figure 9 on page 41, and Figure 10 on page 43; Table 8 on

page 38). The Mag_Cntrl structure, which contains magnitude specification data,

is composed of the first 11 members of the Mag_Descrip structure.

TABLE 54: MAGNITUDE OBJECT

Type Name Description

Bool mag_computed successful network magnitude estimated?
FALSE = no, TRUE = yes

Bool mag_write write Stamag and Netmag database table structure
contents to output database tables?
FALSE = no, TRUE = yes

Mag_Cntrl mag_cntrl Mag_Cntrl structure

Netmag netmag Netmag database table structure

Stamag ** stamag array of pointers to Stamag database table
structures

Amplitude ** amplitude array of pointers to Amplitude database table
structures

SM_Aux * sm_aux array of SM_Aux structures

int count number of elements in Stamag and Amplitude
structures
133

t w a r e

e r 2 0 0 1

134

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
TABLE 55: MAG_DESCRIP STRUCTURE

Type Name Description

char[7] magtype magnitude descriptor

char[9] TLtype transmission-loss descriptor

char[9] det_amptype amplitude measure descriptor for arrival-based
amplitudes

char[9] ev_amptype amplitude measure descriptor for origin-based
amplitudes

int algo_code magnitude algorithm code:
0 = network average,
1 = MLE without bootstrapping,
2 = MLE with bootstrapping

float dist_min minimum valid distance (deg)

float dist_max maximum valid distance (deg)

float sglim1 lower-bound standard deviation

float sglim2 upper-bound standard deviation

float sgbase baseline standard deviation

Bool apply_wgt estimate weighted average magnitudes?
0 = no, 1 = yes

float def_sta_corr default bulk station correction

float def_sta_corr_err default bulk-station-correction error

char[9] orig_det_amptype original amplitude measure descriptor for
arrival-based amplitudes

char[9] orig_ev_amptype original amplitude measure descriptor for
origin-based amplitudes

int orig_algo_code original magnitude algorithm code

float orig_dist_min original minimum valid distance (deg)

float orig_dist_max original maximum valid distance (deg)

float orig_sglim1 original lower-bound uncertainty

float orig_sglim2 original upper-bound uncertainty
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
Mag_Sta_TLType

The Mag_Sta_TLType structure contains bulk-station-correction data (static sta-

tion-magnitude corrections and errors) for a single station and TLtype combina-

tion. The bulk-station-correction data are read from the MDF by read_mdf().

This structure is a component of the earth-model-data memory store (M1 in Fig-

ures 8, 9, and 10; Table 8 on page 38).

SM_Aux

The SM_Aux structure contains auxiliary station-magnitude data for a single ampli-

tude and magtype. build_mag_obj() determines and stores the auxiliary sta-

tion-magnitude data. This structure is nested within the Magnitude object

(Table 54) as a component of the magnitude-data memory store (M2 in Figure 10;

Table 11 on page 45).

float orig_sgbase original baseline uncertainty

Bool orig_apply_wgt original setting for computing weighted aver-
age magnitudes

TABLE 56: MAG_STA_TLTYPE STRUCTURE

Type Name Description

char[7] sta station name

char[9] TLtype transmission-loss descriptor

float bulk_sta_corr bulk station correction

float bulk_sta_corr_err bulk-station-correction error

TABLE 55: MAG_DESCRIP STRUCTURE (CONTINUED)

Type Name Description
135

t w a r e

e r 2 0 0 1

136

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
SM_ In fo

The SM_Info structure contains station-magnitude data for a single amplitude and

magtype. The station-magnitude data are estimated by station_magnitude()

and its lower-level functions. If the calling application operates in station-magni-

tude mode, then this structure composes the station-magnitude-data memory

store (M7 in Figure 8 on page 37; Table 9 on page 40). If the application operates

in network-magnitude mode, then this structure is contained within the Estimate

Station-magnitude Data process (2.3 in Figure 10) and is therefore not shown as a

component of a memory store.

TABLE 57: SM_AUX STRUCTURE

Type Name Description

Bool detect_based arrival-based amplitude? 0 = no, 1 = yes

Bool manual_override retain magnitude-defining state of associated
station magnitude throughout network-mag-
nitude processing? 0 = no, 1 = yes

Bool clipped clipped amplitude? 0 = no, 1 = yes

int sig_type signal type:
1 = arrival-based amplitude,
2 = origin-based amplitude,
3 = clipped amplitude

double wt station-magnitude uncertainty

TABLE 58: SM_INFO STRUCTURE

Type Name Description

int mag_error_code error code returned from interpolating
transmission-loss model

double sta_magnitude station magnitude

int src_dpnt_corr_type1 test-site magnitude correction requested?
0 = no, 1 = yes
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
SM_Sub

The SM_Sub structure contains a subset of the station-magnitude data for a single

station magnitude. The data subset are stored in this structure by calc_mags()

and are only accessed by other functions within the Estimate Network-magnitude

Data process. This structure is a component of the magnitude-data memory store

(M2 in Figure 10 on page 43 and Figure 11 on page 48; Table 11 on page 45).

double total_mag_corr total magnitude correction computed as
sum of mc_table_value and
bulk_static_sta_corr

double mc_table_value distance/dependent magnitude correction

double bulk_static_sta_corr bulk station-magnitude correction

double bulk_sta_corr_error bulk station-magnitude correction error

double src_dpnt_corr1 test-site magnitude correction

double model_error modeling error

double meas_error measurement error

double model_plus_meas_error total magnitude uncertainty computed as
rms of the model_error, meas_error, and
bulk_sta_corr_error

double[4] mag_cor_deriv first and second derivatives of transmission
loss with respect to distance and depth; the
first derivatives are stored in first and second
elements of array, and second derivatives
are stored in third and fourth elements of
array

char[16] mmodel transmission-loss model

char[18] lddate load date

1. This member is not applicable to the IDC.

TABLE 58: SM_INFO STRUCTURE (CONTINUED)

Type Name Description
137

t w a r e

e r 2 0 0 1

138

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
Sta_TL_Mode l

The Sta_TL_Model structure contains optional station-specific TLM description

data for a single station and TLtype combination. The station-specific TLM descrip-

tion data list the root name, optional phase name, and optional channel/frequency

identifier associated with a particular station and TLtype combination. This infor-

mation is used in conjunction with TLM pathway data from the TL_Model_Path

structures (Table 63) to create a pathname that points to a unique, station-specific

TLM. The magnitude corrections and modeling errors within this TLM are to be

used to estimate a station magnitude for a given station and TLtype pair. The

TLtype is linked to a magtype through the Mag_Descrip structure (Table 55). The

station-specific TLM description data are read from the TLSF by read_tlsf().

This structure is a component of the earth-model-data memory store (M1 in

Figure 8 on page 37, Figure 9 on page 41, and Figure 10 on page 43; Table 8 on

page 38).

TABLE 59: SM_SUB STRUCTURE

Type Name Description

char[2] magdef “d” or “n” flag indicating defining or nondefining
state of station magnitude

int sig_type signal type:
1 = arrival-based amplitude,
2 = origin-based amplitude,
3 = clipped amplitude

double wt station-magnitude uncertainty

double magnitude station magnitude

TABLE 60: STA_TL_MODEL STRUCTURE

Member Name Data Type Description

sta char[7] station identifier

TLtype char[9] transmission-loss descriptor
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TLType_Mode l _Desc r ip

The TLType_Model_Descrip structure contains default TLM description data for

a single TLtype. The default TLM description data list the root name and the phase

names associated with a single TLtype. This information is used in conjunction with

TLM pathway data from the TL_Model_Path structures (Table 63) to create a

pathname that points to a default TLM for a TLtype. The magnitude corrections

and modeling errors within this TLM are to be used to estimate station magnitudes

for the magtype associated with the TLtype in the Mag_Descrip structures

(Table 55). The default TLM description data are read from the TLSF by read_

tlsf(). This structure is a component of the earth-model-data memory store (M1

in Figure 8 on page 37, Figure 9 on page 41, and Figure 10 on page 43; Table 8 on

page 38).

model char[16] station-specific TLM root name

phase char[9] phase name

chan char[9] channel identifier

tl_index int index of element in TL_Pt linked list that has
identical TLtype

model_index int index of element in array of TL_Model_Path
structures that has identical model member

TABLE 61: TLTYPE_MODEL_DESCRIP STRUCTURE

Type Name Description

char[9] TLtype transmission-loss descriptor

char[16] model default TLM root name

int model_index index of element in array of
TL_Model_Path structures that has
identical model member

TABLE 60: STA_TL_MODEL STRUCTURE (CONTINUED)

Member Name Data Type Description
139

t w a r e

e r 2 0 0 1

140

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
TL_Mdl_E r r

The TL_Mdl_Err structure contains transmission-loss modeling-error data read

from a single TLM. The modeling errors (that is, standard deviations) are estimates

of the transmission-loss values. They may be distance/depth-dependent, distance-

dependent only, or may be condensed into a single, global value representing the

modeling error for the entire TLM. The transmission-loss modeling error data are

read from the TLM by read_tl_table(). This structure is nested within the TL_

Table structure (Table 64) as a component of the earth-model-data memory store

(M1 in Figure 8 on page 37, Figure 9 on page 41, and Figure 10 on page 43;

Table 8 on page 38).

Bool phase_dependency default TLM phase-dependent?
0 = no, 1 = yes

List_of_Phz * list_of_phz pointer to List_of_Phz linked list

TABLE 62: TL_MDL_ERR STRUCTURE

Type Name Description

float bulk_var single, global transmission-loss modeling error

int num_dists number of distance samples

int num_depths number of depth samples

float * dist_samples array of distance samples for which transmis-
sion-loss modeling errors are valid (deg)

float * depth_samples array of depth samples for which transmission-
loss modeling errors are valid (deg)

float * dist_var array of distance-dependent transmission-loss
modeling errors

float ** dist_depth_var two-dimensional array of distance/depth-
dependent transmission-loss modeling errors

TABLE 61: TLTYPE_MODEL_DESCRIP STRUCTURE (CONTINUED)

Type Name Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N

▼

Chapter 3:

Detai led Design
TL_Mode l _Pa th

The TL_Model_Path structure contains the root name of a TLM and its pathway

relative to the directory location of the TLSF. The TLM pathway data are read from

the TLSF by read_tlsf(). This structure is a component of the earth-model-data

memory store (M1 in Figure 8 on page 37, Figure 9 on page 41, and Figure 10 on

page 43; Table 8 on page 38).

TL_Tab le

The TL_Table structure contains transmission-loss (magnitude correction) data

and transmission-loss modeling error data read from a single TLM. The transmis-

sion-loss data are distance/depth-dependent estimates of the transmission loss

incurred as a signal propagates from an event to a station. The modeling error data

are estimates of the modeling errors in the transmission-loss values. The transmis-

sion-loss and modeling error data are read from a single TLM by read_tl_

table(). This structure is a component of the earth-model-data memory store

(M1 in Figure 8, Figure 9, and Figure 10; Table 8).

TABLE 63: TL_MODEL_PATH STRUCTURE

Type Name Description

char[16] model default TLM root name

char * dir_pathway directory location of TLM relative to TLSF

TABLE 64: TL_TABLE STRUCTURE

Type Name Description

char[9] TLtype transmission-loss descriptor

char[16] model station-specific TLM root name

char[9] phase phase name

char[9] chan channel identifier

int num_dists number of distance samples
141

t w a r e

e r 2 0 0 1

142

▼

Chapter 3:

Detai led Design

S o f t w a r e
I D C D O C U M E N T A T I O N
int num_depths number of depth samples

float[2] in_hole_dist minimum and maximum distance encom-
passing any holes in the TLM (deg)

float * dist_samples array of distance samples for which trans-
mission-loss values are estimated (deg)

float * depth_samples array of depth samples for which trans-
mission-loss values are estimated (deg)

float ** tl two-dimensional array of transmission-
loss values (that is, magnitude corrections)

TL_Mdl_Err * tl_mdl_err pointer to TL_Mdl_Err structure

int num_ts_regions1 number of elements in TL_TS_Cor struc-
ture.

TL_TS_Cor * tl_ts_cor1 pointer to TL_TS_Cor structure

1. This member is not applicable to the IDC.

TABLE 64: TL_TABLE STRUCTURE (CONTINUED)

Type Name Description
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b

S o f t w a r e
I D C D O C U M E N T A T I O N
Refe rences

The following sources supplement or are referenced in document:

[Bla82] Blandford, R. R. and R. H. Shumway, “Magnitude: Yield for
Nuclear Explosions in Granite at the Nevada Test Site and
Algeria: Joint Determination with Station Effects and with Data
Containing Clipped and Low-Amplitude Signals,” Seismic Data
Analysis Center, Teledyne Geotech, VSC-TR-82-12, 1982.

[DOD94a] Department of Defense, “Software Design Description,”
Military Standard Software Development and Documentation,
MIL-STD-498, 1994.

[Gan79] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[IDC5.1.1Rev2] Science Applications International Corporation, Veridian
Pacific-Sierra Research, Database Schema, Revision 2,
SAIC-00/3057, PSR-00/TN2830, 2000.

[IDC5.2.1] Science Applications International Corporation, IDC Processing
of Seismic, Hydroacoustic, and Infrasonic Data, SAIC-99/3023,
1999.

[IDC6.5.1] Science Applications International Corporation, Interactive
Analysis Subsystem Software User Manual, SAIC-01/3001,
2001.

[IDC6.5.2Rev0.1] Science Applications International Corporation, Distributed
Application Control System (DACS) Software User Manual,
Revision 0.1, SAIC-00/3038, 2000.
t w a r e

e r 2 0 0 1 143

144

▼ References

S o f t w a r e
I D C D O C U M E N T A T I O N
[IDC7.1.1] Science Applications International Corporation, Detection and
Feature Extraction (DFX)–Scheme Files, SAIC-01/3000, 2001.

[IDC7.1.5] Science Applications International Corporation, Event Location
Software, SAIC-01/3010, 2001.

[McL88] McLaughlin, K., “Maximum Likelihood Event Magnitude
Estimation with Bootstrapping for Uncertainty Estimation,”
Bulletin of the Seismological Society of America, Volume 78,
pp. 855–862, 1988.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
Glossa ry

A

amplitude

Zero-to-peak height of a waveform in
nanometers.

amptype

Descriptor that uniquely identifies an
amplitude measurement type (for exam-
ple, A5/2 or SBSNR).

analyst

Personnel responsible for reviewing and
revising the results of automatic process-
ing.

Analyst Review Station

This application provides tools for a
human analyst to refine and improve the
event bulletin by interactive analysis.

arrival

Detected signal that has been associated
to an event. First, the Global Association
(GA) software associates the detection
to an event. Later, during interactive
processing, many arrivals are con-
firmed, improved, or added by visual
inspection.

arrival-based amplitude

Amplitude measured by DFX for a
detected signal.

ARS

See Analyst Review Station.

ASCII

American Standard Code for Informa-
tion Interchange. Standard, unformatted
256-character set of letters and num-
bers.

attribute

(1) Database column. (2) Characteristic
of an item; specifically, a quantitative
measure of a S/H/I detection such as
azimuth, slowness, period, or amplitude.

azimuth

Direction, in degrees clockwise with
respect to North, from a station to an
event.

B

bootstrap resampling

Statistical technique of random resam-
pling of data elements with replacement
(that is, without regard to which ele-
ments have already been selected) used
to estimate errors in parameters esti-
mated from a distribution.
G1

t w a r e

e r 2 0 0 1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G2
bulk station correction

Empirical station- and TLtype-specific
term added to the logarithm of the
amplitude during computation of a sta-
tion magnitude to correct for local sta-
tion effects.

bulk station correction error

Estimate of the standard error associated
with the bulk station correction.

C

channel

Component of motion or distinct stream
of data.

CMR

Center for Monitoring Research.

command

Expression that can be input to a com-
puter system to initiate an action or
affect the execution of a computer pro-
gram.

commit

Process of saving changes made to the
database.

component

(1) One dimension of a three-dimen-
sional signal; (2) The vertically or hori-
zontally oriented (north or east) sensor
of a station used to measure the dimen-
sion; (3) One of the parts of a system;
also referred to as a module or unit.

Comprehensive Nuclear-Test-Ban Treaty
Organization

Treaty User group that consists of the
Conference of States Parties, the Execu-
tive Council, and the Technical Secretar-
iat.

computer software component

Functionally or logically distinct part of a
computer software configuration item;
possibly an aggregate of two or more
software units.

computer software configuration item

Aggregation of software that is desig-
nated for configuration management
and treated as a single entity in the con-
figuration management process.

configuration

(1) (hardware) Arrangement of a com-
puter system or components as defined
by the number, nature, and interconnec-
tion of its parts. (2) (software) Set of
adjustable parameters, usually stored in
files, which control the behavior of appli-
cations at run time.

connection

Open communication path between
protocol peers.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as hard-
ware or software that can be acquired
from existing inventory and used with-
out modification.

CSC

See computer software component.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
CSCI

See computer software configuration
item.

CTBTO

See Comprehensive Nuclear-Test-Ban
Treaty Organization.

D

DACS

See Distributed Application Control Sys-
tem.

database table structure

C structure that is structurally equivalent
to the schema of a database table.

defining magnitude

Station magnitude that is used to com-
pute a network magnitude.

deg.

Degrees (as a distance).

detection

Probable signal that has been automati-
cally detected by the Detection and Fea-
ture Extraction (DFX) software.

Detection and Feature Extraction

DFX is a programming environment that
executes applications written in Scheme
(known as DFX applications).

DFX

See Detection and Feature Extraction.

Distributed Application Control System

This software supports inter-application
message passing and process manage-
ment.

E

element

Single station or substation of a sensor
array, referred to by its element name
(such as YKR8), as opposed to its array
name (YKA in this example). (2) Data
storage location in a data array.

event

Unique source of seismic, hydroacoustic,
or infrasonic wave energy that is limited
in both time and space.

EvLoc

Application used to compute event loca-
tion and/or magnitude.

execute

Carry out an instruction, process, or
computer program.

external interface

Library processing unit that exchanges
data with an application.

external memory store

Memory store accessed by multiple
applications or libraries.
G3

t w a r e

e r 2 0 0 1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G4
F

field

(1) Attribute of a generic object.
(2) Attribute in a database table (the
name of the column).

filesystem

Named structure containing files in sub-
directories. For example, UNIX can sup-
port many filesystems; each has a unique
name and can be attached (or mounted)
anywhere in the existing file structure.

function

Named section of a program that per-
forms a particular task.

G

GA

See Global Association.

GAcons

GA application that precomputes propa-
gation knowledge base information and
stores it in two grid files used by GA.

GB

Gigabyte. A measure of computer mem-
ory or disk space that is equal to 1,024
megabytes.

GDI

Generic Database Interface.

Global Association

Subsystem that associates S/H/I phases
to events.

grid

Set of points used by GA covering either
a region of the earth or the whole earth
and including the interior where deep
seismicity occurs. Information about
propagation to a network of stations is
computed by GAcons for a grid and
stored in a binary file.

GSETT-3

Group of Scientific Experts Third Techni-
cal Test.

I

IDC

International Data Centre.

IMS

International Monitoring System.

internal interface

Library processing unit that exchanges
data only with other processing units in
the same library.

internal memory store

Memory store accessed only by a single
application or library.

IPC

Interprocess communication. The mes-
saging system by which applications
communicate with each other through
libipc common library functions. See
tuxshell.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
K

km

Kilometer.

L

LAN

Local Area Network.

libgdi

Library containing functions for RDBMS
access.

linked list

List of similar data structures linked to
one another through the use of pointers.
A linked list can be uni-directional (the
pointer is always to the next element in
the list) or bi-directional (there are point-
ers to both the previous and next ele-
ments in the list).

lower-bound magnitude

Arithmetic mean of a set of station mag-
nitudes that were computed exclusively
from clipped amplitudes.

M

magnitude

Empirical measure of the size of an event
(usually made on a log scale).

magnitude correction

A correction added to the logarithm of
the amplitude during computation of a
station magnitude.

magnitude correction table

ASCII file representation of a Transmis-
sion Loss Model.

Magnitude Description File

File that maps amptypes and TLtypes to
magtypes and specifies magnitude con-
trol settings and bulk station correction
data.

magnitude-defining

See defining magnitude.

magtype

Descriptor that uniquely identifies a
computed magnitude type (for example,
mb_ave or mb_mle).

MB

Megabyte. 1,024 kilobytes.

mb

Magnitude estimated from seismic body
waves.

MDF

See Magnitude Description File.

member

A variable in a data structure.

ML

Magnitude estimated from seismic
waves measured near the source.

MLE

Maximum Likelihood Estimate.
G5

t w a r e

e r 2 0 0 1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G6
modelling error (magnitude)

Estimate of the standard error associated
with the transmission loss model correc-
tion.

Ms

Magnitude of seismic surface waves.

N

N/A

Not Applicable.

network

Spatially distributed collection of seismic,
hydroacoustic, or infrasonic stations for
which the station spacing is much larger
than a wavelength.

network processing

Processing that uses the results of Sta-
tion Processing from a network of sta-
tions to define and locate events.

network-average magnitude

Arithmetic mean of a set of station mag-
nitudes computed from arrival-based
amplitudes.

nm

Nanometer.

noise

Incoherent natural or artificial perturba-
tions of the waveform trace caused by
ice, animals migrations, cultural activity,
equipment malfunctions or interruption
of satellite communication, or ambient
background movements.

NoiseAmp

Automatic Noise Amplitude Estimation.
A DFX Scheme application that mea-
sures the noise level at stations that did
not detect signals from a given event.

nondefining magnitude

Station magnitude that is not used to
compute a network magnitude.

NULL

Empty, zero.

O

ORACLE

Vendor of the database management
system used at the PIDC and IDC.

orid

Origin Identifier.

origin

Hypothesized time and location of a
seismic, hydroacoustic, or infrasonic
event. Any event may have many ori-
gins. Characteristics such as magnitudes
and error estimates may be associated
with an origin.

origin-based amplitude

Amplitude measured in a time window
computed from the predicted travel time
from the origin.

P

par

See parameter.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
parameter

User-specified token that controls some
aspect of an application (for example,
database name, threshold value). Most
parameters are specified using [token =
value] strings, for example,
dbname=mydata/base@oracle.

parameter (par) file

ASCII file containing values for parame-
ters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.

parrival

Database table that contains the pre-
dicted arrivals and associations for ori-
gin-based amplitude measurements.

parse

Decompose information contained in a
set of data.

pathname

Filesystem specification for a file’s loca-
tion.

period

Average duration of one cycle of a
phase, in seconds per cycle.

phase

Arrival that is identified based on its path
through the earth.

phase name

Name assigned to a seismic, hydroa-
coustic or infrasonic arrival associated
with a travel path.

PIDC

Prototype International Data Centre.

pipeline

1) Flow of data at the IDC from the
receipt of communications to the final
automated processed data before ana-
lyst review. 2) Sequence of IDC pro-
cesses controlled by the DACS that
either produce a specific product (such
as a Standard Event List) or perform a
general task (such as station processing).

post-location processing

Software that computes various magni-
tude estimates and selects data to be
retrieved from auxiliary stations.

pre-existing magnitude records

Input station and/or network magnitude
data created by an earlier EvLoc or ARS
run.

process

Function or set of functions in an appli-
cation that perform a task.

processing unit

Software component of a larger entity
such as a program.

program

Organized list of instructions that, when
executed, causes the computer to
behave in a predetermined manner. A
program contains a list of variables and a
list of statements that tell the computer
what to do with the variables.
G7

t w a r e

e r 2 0 0 1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G8
Q

query

Request for specific data from a data-
base.

R

RAM

Random Access Memory.

RDBMS

Relational Database Management Sys-
tem.

REB

See Reviewed Event Bulletin.

regional

(1) (distance) Source-to-seismometer
separations between a few degrees and
20 degrees. (2) (event) Recorded at dis-
tances where the first P and S waves
from shallow events have traveled along
paths through the uppermost mantle.

residual

Difference between the observed value
for an attribute (for example, time, azi-
muth, slowness, or magnitude) and its
corresponding theoretical value.

Reviewed Event Bulletin

Bulletin formed of all S/H/I events that
have passed analyst inspection and qual-
ity assurance review.

rms

Root mean square.

root name

Base name in a filename, as distin-
guished from the path or suffix (for
example, qfvc is the root name in the
filename qfvc.mb).

S

s

Second(s) (time).

S/H/I

Seismic, hydroacoustic, and infrasonic.

SAIC

Science Applications International Cor-
poration.

SASC

Slowness-Azimuth Station Corrections.

save

Store an analyzed event to the final
database, thereby preventing further
changes to the event.

schema

Database structure description.

seismic

Pertaining to elastic waves traveling
through the earth.

slowness

Inverse of velocity, in seconds/degree; a
large slowness has a low velocity.

snr

Signal-to-noise ratio.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Glossary

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
Solaris

Name of the operating system used on
Sun Microsystems hardware.

StaPro

Station Processing application for S/H/I
data.

States Parties

Treaty user group who will operate their
own or cooperative facilities, which may
be National Data Centres.

station

Collection of one or more monitoring
instruments. Stations can have either
one sensor location (for example, BGCA)
or a spatially distributed array of sensors
(for example, ASAR).

station code (or ID)

(1) Code used to identify distinct sta-
tions. (2) Site code.

station processing

Processing based on data from a single
station.

station weight

Weight used when combining station
values into a network value. The weight
is the inverse square of the station
uncertainty.

status code

Integer code returned from a function to
a calling function indicating whether or
not it encountered any warning or error
conditions.

structure

Software construct that collects one or
more variables, possibly of different
types, together under a single name for
convenient handling.

T

theoretical arrival

Point where an arrival is expected to
appear on a waveform, based on an
event’s location and depth.

TLM

See Transmission Loss Model.

TLSF

See Transmission Loss Specification File.

TLtype

Descriptor that uniquely identifies the
transmission-loss model associated with
a particular magnitude type (for exam-
ple, mb or ms).

transmission loss correction

Empirical distance/depth-dependent
correction added to the logarithm of the
amplitude during computation of a sta-
tion magnitude.

Transmission Loss Model

Distance- and depth-dependent magni-
tude corrections and modelling errors for
an attenuation curve associated with a
particular TLtype and optional phase
type and channel/frequency identifier.
G9

t w a r e

e r 2 0 0 1

▼ Glossary

S o f t w a r e
I D C D O C U M E N T A T I O N

G10
Transmission Loss Specification File

File that specifies all mappings between
global and regional transmission loss
types and models.

tuxshell

Process in the Distributed Processing
CSCI used to execute and manage appli-
cations. See IPC.

U

uncertainty

Estimate of the deviation from the true
mean for the parameter or variable of
interest.

UNIX

Trade name of the operating system
used by the Sun workstations.

upper-bound magnitude

Arithmetic mean of a set of station mag-
nitudes computed exclusively from ori-
gin-based amplitudes.

W

WaveExpert

Application in the Automatic Processing
CSCI that determines data intervals to
request from auxiliary stations.

waveform

Time-domain signal data from a sensor
(the voltage output) where the voltage
has been converted to a digital count

(which is monotonic with the amplitude
of the stimulus to which the sensor
responds).

weighted-average magnitude

Network magnitude that is estimated by
weighting each defining station magni-
tude by its station weight.

workstation

High-end, powerful desktop computer
preferred for graphics and usually net-
worked.
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
I ndex

A

affiliation 11, 13, 16, 33, 56, 121, 124, 125
amplitude 11, 13, 17, 34, 56, 122, 124, 126
Amplitude structure 14, 17, 36
analyst_log 23
ARS 4, 6, 14, 24, 26
assoc 11, 13, 17, 34, 56, 57, 121, 124, 126,

127
Assoc structure 14, 17, 36

B

build_mag_obj() 45, 57, 58, 88, 99, 132,
135

error states 91
I/O 88
interfaces 91

C

calc_mags() 46, 47, 49, 53, 92, 95, 96, 97,
103, 105, 106, 108, 109, 110, 137

error states 101
I/O 97
interfaces 101

control-parameter-data memory store 33,
42, 54, 55, 125, 128

conventions

typographical vi
copy_magnitudes() 58
COTS

libraries 11
software requirements 8

D

DACS 5
data flow model

EvLoc 30
data flow symbols iv
DFX 24

E

earth model 10, 12, 16, 18, 20, 26, 37, 39, 40,
42, 46, 58, 73, 74, 132

earth-model-data memory store 37, 42, 46,
79, 81, 82, 85, 87, 93, 94, 116, 133, 135,
138, 139, 140, 141

endpar() 53
entity-relationship symbols v
event_control 11, 13, 16, 17, 33, 57, 61, 122,

123, 124, 126, 128, 129
Event_control structure 33, 34, 57, 61,

130
event-data memory store 34, 42, 57, 59,

128, 130, 131
Ev linked list 34, 35, 57, 58, 59, 60, 61, 130
EvLoc 4, 6

command line 25
database table use 13
data flow model 30
error messages 25
functional design 15
I1

t w a r e

e r 2 0 0 1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I2
functions 14
interface with IDC systems 23
libraries 11
main() 51
main() error states 53
main() I/O 51
main() interfaces 52
Obtain Updated Magnitude Results 59
Read Control-parameter Data 16, 53,

55
Read Event Data 17, 55
Read Station Data 16, 55

EvLoc_Par structure 33, 34, 35, 54, 56, 60,
125, 125

F

free_tl_table() 83
functional design

EvLoc 15
libmagnitude in network-magnitude

mode 19, 42
libmagnitude in station-magnitude

mode 18, 36

G

GA 4, 6
GAcons 26, 96
gdi_add_ArrayStructs() 61
gdi_close() 59, 61
gdi_commit() 61
gdi_error_get() 58, 61
gdi_error_init() 58, 61
gdi_get_ArrayStructs() 58
gdi_get_counter() 61
gdi_init() 58, 61
gdi_open() 58, 61
gdi_rollback() 61
gdi_submit() 61
get_delta_for_sta() 116

get_mag_indexes() 94, 95, 96
get_magtype_features() 92
get_magtypes_features() 89
get_meas_error() 97
get_TL_indexes() 116
get_tl_model_error() 95, 96
getpar() 55

H

hardware requirements 8

I

initialize_loc_params() 54
initialize_mag_ params() 54
initialize_sm_info() 97
interp_for_tl_value() 94, 96

L

lastid 60, 61
libgdi 16, 24
libmagn 7
libmagnitude

Build Magnitude Data Store 21, 44, 45,
72, 88, 118

database table structures 14
error messages 26
Estimate Network-magnitude Data 22,

45, 47, 73, 97, 99, 102, 103, 107, 110,
114, 118, 137

Estimate Station Magnitude Data 46
Estimate Station-magnitude Data 21,

39, 40, 45, 46, 73, 92, 93, 95, 97, 98,
99, 117, 136

functions 17
history 7
interface with IDC systems 25
libraries 11
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
network magnitude functional
design 19, 42

Read Earth-model Data 20, 38, 39, 40,
42, 72, 73, 77, 78, 80, 85, 117

relationship to other software units 6
station magnitude functional design 18,

36
libpar 52
libstdtime 53, 61
locate_event() 52

M

mag_boot_strap() 47, 49, 99, 102, 107,
110, 113

error states 110
I/O 107
interfaces 110

Mag_Cntrl structure 44, 46, 90, 104, 105,
109, 112, 115, 133

Mag_Descrip structure 38, 44, 78, 79, 89,
90, 94, 97, 133, 133, 138, 139

mag_error_msg() 75
mag_max_lik() 47, 49, 102, 105, 106,

109, 110, 110
error states 113
I/O 110
interfaces 113

Mag_Params structure 33, 34, 44, 54, 56,
57, 98, 128, 131

Mag_Ptr structure 131
Mag_ptr structure 34, 35, 57, 60, 131
Mag_Sta_TLType structure 135
magnitude-data memory store 44, 46, 47,

91, 93, 97, 100, 104, 108, 111, 114, 118,
132, 135, 137

Magnitude Description File (MDF) 12, 37
Magnitude object 10, 21, 22, 23, 35, 44,

45, 57, 58, 60, 88, 89, 90, 91, 92, 97, 98,
99, 100, 101, 131, 132, 132, 135

make_predicts() 61
memory store

control-parameter data 33, 42, 54, 55,
125, 128

earth-model data 37, 42, 46, 79, 81, 82,
85, 87, 93, 94, 116, 133, 135, 138,
139, 140, 141

event data 34, 42, 57, 59, 128, 130, 131
magnitude data 44, 46, 47, 91, 93, 97,

100, 104, 108, 111, 114, 118, 132,
135, 137

station, event, and control-parameter
data 36, 42, 59, 78, 81, 88, 93, 97,
100, 104, 108, 111

station data 33, 42, 57
station-magnitude data 39, 46, 95, 117,

136
memory stores 30
MsOrid 24
mstspar() 55

N

netmag 11, 13, 17, 34, 56, 60, 61, 122, 123,
124, 126, 127

Netmag structure 14, 17, 35, 60, 90, 91, 100
network_mag() 47, 99, 102, 103, 110,

113, 114, 115
error states 106
I/O 103
interfaces 106

network magnitude 5, 22

O

only_bound_amps() 47, 102, 105, 106,
113

error states 116
I/O 114
interfaces 115

origerr 126, 127
origin 11, 13, 17, 34, 56, 57, 58, 60, 61, 100,

121, 122, 124, 125, 126, 127
I3

t w a r e

e r 2 0 0 1

▼ Index

S o f t w a r e
I D C D O C U M E N T A T I O N

I4
Origin structure 14, 17, 35, 36, 46, 60, 100,
101

P

parrival 11, 13, 17, 34, 56, 122, 124, 126
Parrival structure 14, 17, 36

R

read_evloc_db_tables() 33, 34, 52,
53, 55, 130, 131

error states 59
I/O 55
interfaces 58

read_evloc_par() 33, 52, 53, 53, 125,
128

error states 55
I/O 53
interfaces 54

read_mdf() 40, 75, 77, 135
error states 80
I/O 77
interfaces 80

read_sasc() 58
read_tl_table() 40, 42, 75, 82, 83, 84,

85, 140, 141
error states 87
I/O 85
interfaces 87

read_tlsf() 40, 41, 42, 75, 79, 80, 85, 87,
138, 139, 141

error states 84
I/O 80
interfaces 83

requirements
COTS software 8
hardware 8

S

set_sta_TL_pt() 75
setpar() 52
setup_mag_facilities() 39, 40, 42,

58, 73, 78, 80, 82
error states 74
I/O 73
interfaces 74

setup_mc_tables() 75, 77, 79, 80, 84
setup_tt_facilities() 58
shared libraries 11
site 11, 13, 16, 33, 56, 121, 124, 125
Site structure 14, 16, 36
SM_Aux structure 100, 135
SM_Info structure 95, 98, 136
SM_Sub structure 99, 104, 108, 111, 115,

137
Sta_TL_Model structure 138
stamag 11, 13, 17, 34, 56, 60, 61, 122, 123,

124, 126, 127
Stamag structure 14, 17, 90, 91, 98, 99, 100
StaPro 4, 6, 26
station, event, and control-parameter data

memory store 36, 42, 59, 78, 81, 88, 93,
97, 100, 104, 108, 111

station_magnitude() 40, 46, 92, 98,
103, 136

error states 96
I/O 92
interfaces 96

station-data memory store 33, 42, 57
station magnitude 5, 21
station-magnitude-data memory store 39,

46, 95, 117, 136
stdtime_get_epoch() 53
stdtime_get_lddate() 61
symbols

data flow iv
entity-relationship v
 S e p t e m b e r 2 0 0 1 I D C - 7 . 1 . 6

E v e n t M a g n i t u d e S o f t w a r e

S o f t w a r e
I D C D O C U M E N T A T I O N

▼Index

E v e n t M a g n i t u d e S o f

I D C - 7 . 1 . 6 S e p t e m b
T

tis_server 23
tis-recall 23
TL_error_msg() 75
TL_Mdl_Err structure 87, 140
TL_Model_Path structure 81, 82, 138,

139, 141
TL_Table structure 82, 86, 87, 94, 95, 96,

140, 141
TLType_Model_Descrip structure 81,

82, 139
Transmission-Loss Models (TLMs) 20, 37
Transmission-Loss Specification File

(TLSF) 12, 37
tuxshell 23
typographical conventions vi

W

WaveExpert 4, 6, 26, 96
write_evloc_db_tables() 35, 52, 59,

130
error states 62
I/O 59
interfaces 61
I5

t w a r e

e r 2 0 0 1

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using this Document
	Conventions

	Chapter 1: Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-The-Shelf Software

	Chapter 2: Architectural Design
	Conceptual Design
	Design Decisions
	Programming Language
	Global Libraries
	Database
	Filesystem
	Design Model
	Database Schema Overview

	EvLoc Functional Description
	Read Control-parameter Data
	Read Station Data
	Read Event Data
	Obtain Updated Magnitude Results

	libmagnitude Functional Description
	Read Earth-model Data
	Build Magnitude Data Store
	Estimate Station-magnitude Data
	Estimate Network-magnitude Data

	EvLoc Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	libmagnitude Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Chapter 3: Detailed Design
	EvLoc Data flow Model
	libmagnitude Data Flow Model
	Station-magnitude Mode
	Network-magnitude Mode

	EvLoc Processing Units
	main()
	read_evloc_par()
	read_evloc_db_tables()
	write_evloc_db_tables()

	libmagnitude Processing Units
	setup_mag_facilities()
	read_mdf()
	read_tlsf()
	read_tl_table()
	build_mag_obj()
	station_magnitude()
	calc_mags()
	network_mag()
	mag_boot_strap()
	mag_max_lik()
	only_bound_amps()

	Primary libmagnitude Functional Areas
	Station Magnitude Estimation
	Network Magnitude Estimation

	Data Description
	Database Design
	Database Schema
	EvLoc Data Structures
	libmagnitude Data Structures

	References
	Glossary
	Index
	
	Print...

